First results from a microwave cavity axion search at 24 μeV

Ben Brubaker
Yale University

January 12, 2017
Axion Workshop – LLNL
Outline

- Introduction: challenges/motivation for high-mass searches
- JPA operation and noise performance
- First results
- Recent progress and near-term plans
Only ADMX has reached the model band to date.

The parameter space is mostly unexplored, especially at high frequencies.
The cavity search at high frequencies

Challenges

- At constant coupling,
 \[\frac{d\nu}{dt} \sim \nu^{-14/3} \]
 for resonator geometries used in axion searches to date
- Largely due to small volume of high-frequency resonators
- Standard Quantum Limit (SQL): \(kT_S \geq h\nu \) for linear amplifiers

The Silver Lining

- Cryogenics much simpler at 5 cm scale than 50 cm scale
- Josephson parametric amplifiers (JPAs): tunable amplifiers in the 2-12 GHz range which can approach quantum noise limits
Our collaboration

- **Yale University (host)**
 - Ben Brubaker, Ling Zhong, Yulia Gurevich, Sid Cahn, Steve Lamoreaux

- **UC Berkeley**
 - Maria Simanovskaia, Jaben Root, Samantha Lewis, Saad Al Kenany, Kelly Backes, Isabella Urdinaran, Nicholas Raptopidis, Tim Shokair, Karl van Bibber

- **CU Boulder/JILA**
 - Maxime Malnou, Dan Palken, William Kindel, Mehmet Anil, Konrad Lehnert

- **Lawrence Livermore National Lab**
 - Gianpaolo Carosi
Detector Design

A data pathfinder and innovation testbed for the high-mass region

Josephson Parametric Amplifier

Microwave Cavity (copper)

\(^3\text{He}/\text{He} \) Dilution Refrigerator

9.4 Tesla, 10 Liter Magnet
Cavity and Motion Control

- Tuning via rotation of off-axis Cu rod
- Linear drives for dielectric fine tuning and antenna insertion
- \(\sim \) annular geometry: maximizes V for \(\text{TM}_{010} \)-like mode at given \(\nu \)
- \(Q_0 \sim 3 \times 10^4, \; C_{010} \sim 0.5 \) in initial operating range
Josephson Parametric Amplifier

- An LC circuit with nonlinear SQUID inductance \Rightarrow parametric gain from a strong pump tone applied near resonance.

- Analogous to modulating your center of mass at $2\omega_0$ on a swing (figure from arXiv 1103.0835): defines a preferred phase

- Signals detuned from the pump are superpositions of amplified and squeezed quadratures \Rightarrow both direct and intermodulation gain

- Added noise is just thermal noise of the “idler mode” from opposite side of pump
Apply DC magnetic flux to tune LC resonance from 4.4 to 6.5 GHz

Bias up to ~ 21 dB gain by varying pump power P_p and detuning Δ between pump frequency and LC resonance

In practice: want to keep ω_P at fixed detuning from cavity – use flux to adjust bias point

Bucking coil, Pb/Nb/Cryoperm shields, and passive NbTi coils for $\sim 10^8$ net reduction of field on JPA
JPA Biasing and Tuning

![Graph showing JPA frequency versus bias current with two magnetic field conditions: B = 0 T and B = 9 T.]
Noise calibration principle

\[kT_S = h\nu \left(\frac{1}{e^{h\nu/kT} - 1} + \frac{1}{2} + N_A \right) \]

- Linear detection: \(\geq 1/2 \) photon at the input of any linear amplifier, because quadrature amplitudes don’t commute with Hamiltonian.

- The Standard Quantum Limit: A phase-insensitive linear amplifier must add noise \(N_A \geq 1/2 \), because quadrature amplitudes don’t commute with each other.

- Measure \(N_A \) using blackbody source at known temperature (the Y-factor method) – includes JPA added noise, HEMT added noise and loss before JPA.

\[Y = \frac{P_{\text{Hot}}}{P_{\text{Cold}}} = \frac{G_H [N_H + N_A (N_H)]}{G_C [N_C + N_A (N_C)]} \]
Noise calibration principle

\[kT_S = h\nu \left(\frac{1}{e^{\frac{h\nu}{kT}} - 1} + \frac{1}{2} + N_A \right) \]

- **Linear detection:** \(\geq 1/2 \) photon at the input of any linear amplifier, because quadrature amplitudes don’t commute with Hamiltonian.

- The Standard Quantum Limit: A phase-insensitive linear amplifier must add noise \(N_A \geq 1/2 \), because quadrature amplitudes don’t commute with each other.

- Measure \(N_A \) using blackbody source at known temperature (the Y-factor method) – includes JPA added noise, HEMT added noise and loss before JPA.

\[Y = \frac{P_{\text{Hot}}}{P_{\text{Cold}}} = \frac{G_H [N_H + N_A (N_H)]}{G_C [N_C + N_A (N_C)]} \]
Noise calibration principle

\[kT_S = h\nu \left(\frac{1}{e^{h\nu/kT} - 1} + \frac{1}{2} + N_A \right) \]

- Linear detection: \(\geq 1/2 \) photon at the input of any linear amplifier, because quadrature amplitudes don’t commute with Hamiltonian.

- The Standard Quantum Limit: A phase-insensitive linear amplifier must add noise \(N_A \geq 1/2 \), because quadrature amplitudes don’t commute with each other.

- Measure \(N_A \) using blackbody source at known temperature (the Y-factor method) – includes JPA added noise, HEMT added noise and loss before JPA.

\[Y = \frac{P_{Hot}}{P_{Cold}} = \frac{G_H [N_H + N_A (N_H)]}{G_C [N_C + N_A (N_C)]} \]
Noise calibration results

- We measure \(N_A \approx 1.35 \Rightarrow T_S \approx 550 \text{ mK off resonance} \)

- Total noise increases to \(T_S \approx 3h\nu \approx 830 \text{ mK on resonance} \)

- Off-resonance noise consistent with 20% thermal contribution, \(\sim 0.2 \text{ quanta from HEMT}, \sim 0.5 \text{ quanta from } \sim 2 \text{ dB loss before JPA} \)

- Temperature- and gain-dependence of resonant noise bump implicates thermal link to tuning rod
Noise calibration results

- We measure $N_A \approx 1.35 \Rightarrow T_S \approx 550$ mK off resonance
- Total noise increases to $T_S \approx 3h\nu \approx 830$ mK on resonance
- Off-resonance noise consistent with 20% thermal contribution, ~ 0.2 quanta from HEMT, ~ 0.5 quanta from ~ 2 dB loss before JPA
- Temperature- and gain-dependence of resonant noise bump implicates thermal link to tuning rod
Noise calibration results

- We measure $N_A \approx 1.35$ ⇒ $T_S \approx 550$ mK off resonance

- Total noise increases to $T_S \approx 3h\nu \approx 830$ mK on resonance

- Off-resonance noise consistent with 20% thermal contribution, ~ 0.2 quanta from HEMT, ~ 0.5 quanta from ~ 2 dB loss before JPA

- Temperature- and gain-dependence of resonant noise bump implicates thermal link to tuning rod
Noise calibration results

- We measure $N_A \approx 1.35 \Rightarrow T_S \approx 550 \text{ mK off resonance}$
- Total noise increases to $T_S \approx 3h\nu \approx 830 \text{ mK on resonance}$
- Off-resonance noise consistent with 20% thermal contribution, ~ 0.2 quanta from HEMT, ~ 0.5 quanta from $\sim 2 \text{ dB loss before JPA}$
- Temperature- and gain-dependence of resonant noise bump implicates thermal link to tuning rod
Timeline

- 4/2012 – 6/2014: Design/construction
- 7/2014 – 1/2016: Integration/commissioning
 - Eliminated vibrationally coupled JPA gain fluctuations by operating at 125 mK
 - Added analog flux feedback system to stabilize JPA gain
 - Implemented blind injection of synthetic axion signals
- 1/26/2016 – 9/1/2016: Operations
 - 3.5 months of automated data acquisition: ~ 7000 15-minute integrations covering 5.7 – 5.8 GHz
 - Campus-wide power outage on 3/7/2016 led to magnet quench: 2 months downtime for repairs
 - 28 candidate frequencies from final analysis: rescanned 8/2016
 - We did not find the axion!
Magnet Quench

- 500 kJ dissipated over a few seconds; warping due to eddy current forces
- Helium circulation lines unharmed!
- Shields rebuilt w/ less copper.
Analysis Procedure

Based on Asztalos et al. PRD (2001) w/ various refinements: fit out spectral baselines, construct maximum-likelihood-weighted sum of overlapping subspectra.
Set 3.46σ threshold on power excess within ~ 5 kHz, rescan candidate frequencies to check for coincidences

Innovations:

- Optimal Savitzky-Golay fitting of subspectra
- Maximum-likelihood weighting for both subspectra and adjacent bins
- Confidence levels from statistics rather than Monte Carlo
- Taking into account all possible loss factors not directly measured
2.3 × KSVZ over 100 MHz a decade higher in mass than ADMX.
Coverage will be extended to a few GHz over the next few years.
Now an operational platform for tests of new cavity and amplifier concepts!
Repeatable stepping with 45 V on Attocube ANR240
Recent Progress – Rod thermal link

![Graph showing noise (quanta) vs. IF frequency (MHz)]

- N_{sys}
- N_A
- N_{cav}
- N_C
Recent Progress – Rod thermal link

Position C

Insertion depth = 2.12” (copper finger inside rod)

Q = 7650 (~ max unperturbed)

Cavity End Cap

Tuning Rod

Copper Finger

Alumina Shaft
Recent Progress – Rod thermal link

![Graph showing noise vs. IF frequency (MHz) with different lines representing N_sys, N_A, N_cav, and N_C.](image)
What’s Next?

- Now: double coverage at 150% initial scan rate
- Transfer experiment to new BlueFors dil fridge: more stable, reduced vibrations ⇒ colder
- JPA/cavity fabrication to extend frequency range
- R&D for next-generation searches:
 - Squeezed state receiver (CU) – to be installed in 2017
 - New cavity concepts: PGBs, DBRs, superconducting thin films (UCB)
Further reading and acknowledgments

- “First results from a microwave cavity at 24 micro-eV,” B. M. Brubaker et al., arXiv:1610.02580 (to be published in PRL, designated an “Editors’ Suggestion”).

- Detailed analysis paper coming soon!

[Logos of NSF, HSF, and Department of Energy]
Extra Slides
Signal Power and Scan Rate

\[P_S = \left(g_\gamma^2 \alpha^2 \frac{\hbar^3 c^3 \rho_a}{\Lambda^4} \right) \left(\frac{\beta}{1 + \beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mn\ell} Q_L \frac{1}{1 + (2\delta\nu/\Delta\nu_c)^2} \right) \]

\[\text{SNR} = \frac{P_S}{k_B T_S} \sqrt{\frac{\tau}{\Delta\nu_a}} \]

\[\frac{d\nu}{dt} \approx \frac{4}{5} \frac{Q_L Q_a}{\text{SNR}^2} \left(g_\gamma^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4} \right)^2 \left(\frac{1}{\hbar \mu_0} \frac{\beta}{1 + \beta} B_0^2 V C_{mn\ell} \frac{1}{N_S} \right)^2 \]
Microwave Layout

- 3 paths for injection into fridge: transmission, reflection, JPA pump.

- Cryo microwave switch (Radiall) and terminator at still plate for Y-factor measurement.

- Second-stage amplifier: LNF LNC4_8A: $T_N \approx 4$ K.
- GaGe Oscar CSE4344 ADC: 14 bits, 25 MS/s sampling.

- Agilent E5071C VNA for cavity and JPA measurements.

- Keysight N5183B (w/ white noise at FM input) for fake axion injection.

- JPA flux bias: 20-bit ADC w/ 1 μV resolution and 1 mA/V current source.

- Flux feedback system (in pink).
Squeezed states for axion detection

- JPAs can operate in a mode where they amplify one signal quadrature and squeeze the other: no SQL.
- If we align the squeezed quadrature of one JPA with the amplified quadrature of another, no 1/2 photon from linear detection either: $kT_S \ll h\nu$!
- Cavity must be overcoupled; squeezed state injected in reflection. Works due to finite axion coherence time $\sim 200 \mu s$.
- Eliminating loss before JPA is a challenge.
- See H. Zheng et al., arXiv:1607.02529
DAQ procedure

- Noise is mixed down to MHz and digitized at 25 MS/s for $t \sim 15$ min.

- In-situ FFT computation, image rejection, and averaging of power spectra with 100 Hz resolution.

- Step resonance by $\sim \Delta \nu_c / 4$ and repeat $O\left(10^4\right)$ times.

- At each step, we measure Q_L and β and rebias JPA.

- Noise calibrations interleaved into the axion search (every 10 iterations).

- Data rate ~ 20 GB/100 MHz (500 TB/100 MHz to save full time series data).
IF configuration

Eliminated by image rejection

Analysis band 0.129-1.431 MHz

Sensitivity to axion

0.78

1.6

3 dB point of filter

Nyquist frequency

IF frequency (MHz)

LO

JPA gain

Pump

Probe tone 0.03
Noise decreases as $\tau^{-1/2}$ out to at least 24 hours.
Histograms

Real data:

Simulation:
Synthetic axion injection

(a)

(b)

(c)

Δν = 100 Hz

Δν = 5 kHz

5.7161

5.718

Frequency (GHz)
Cavity Tuning