Resonance Corrections at J-PARC MR

US-Japan Workshop on Accelerators and Beam Equipment for High-Intensity Neutrino Beams 2016/11/10 Susumu Igarashi (KEK) for the J-PARC MR Beam Commissioning Group

Space Charge Tune Spread 380 kW

- MR Power 380 kW •
- MR Cycle: 2.48 s •
- Number of protons: 2.5e13 ٠ ppb
- Transverse Emittance: 16π ٠ mmmrad
- Bunching Factor: 0.3 ٠
- Space Charge Tune Shift: 0.33 •

$$\Delta v = \frac{2\pi R N r_0}{4\pi \sigma^2 / \beta (v/c)^2 \gamma^3 B_f} = 0.33$$

- E = 3 GeV
- $(v/c)^2 \gamma^3 = 69.751$
- $2\pi RN = 2.5 \times 10^{13} \times 9$: Intensity
- $4\pi\sigma^2/\beta = 16\pi$ mmmrad : Emittance
- $B_f = 0.3$: Bunching factor

Dynamic Aperture

Initial test particles

81π

ev

- J-PARC MR has a three fold symmetry.
- Non structure resonances would be caused by magnet errors.
- SAD simulation with magnet errors, multipole components and alignment errors.
- Track 10 test particles for 1000 turns and count the number of particles within the aperture of 81π mmmrad for each set of tune.

Linear Coupling Resonance Correction with Skew Quadrupole Magnets

Measured beam survival on LCR (22.28, 20.71) w changing Skew Q No correction Corrected with 3 GeV DC Corrected from 3 to 30 GeV

Skew Q setting reduces beam loss in high intensity operation and is used for the user operation.

2 bunch injection 380 kW equiv. *10¹³ ppb (k1 2 bunch)

FX Septum Leak Field

- FX septum magnets makes undesirable Q fields for circulating beam with the leak fields.
- Leak field of 8 FX septum magnets corresponds to $\sim 3\%$ of K1 of the main Q magnet.
- Trim coils of 3 Q magnets have been used to correct the leak field of FX septum magnets.

Correction of the Resonance $3v_x = 67$

- Search the tune around (22.34, 20.75) for the condition of worse beam survival.
- Low intensity beam of 8E11ppp
- 3 GeV DC mode
- Search the trim coil current setting for the recovery of beam survival. SFA048 +0.3 A, SFA055 0 A.
- The beam survival recovered with the trim coil current setting for the correction of both 3vx = 67 and vx+2vy = 64 (SFA048 +1.11 A, 055 -0.69 A, 062 +0.81 A, 069 -069 A).

Correction of the Resonance $v_x + 2v_x = 64$

- Search the tune around (22.34, 20.75) for the condition of worse beam survival.
- Low intensity beam of 8E11ppp
- 3 GeV DC mode
- Search the trim coil current setting for the recovery of beam survival. SFA048 +1.1 A, SFA055 0 A.
- The beam survival recovered with the trim coil current setting for the correction of both 3vx = 67 and vx+2vy = 64 (SFA048 +1.11 A, 055 -0.69 A, 062 +0.81 A, 069 -069 A).

Correction of the 3rd Order Resonances of both vx+2vy = 64 and 3vx = 67Equations for canceling both resonances, for $k_2(1)$, $k_2(2)$, $k_2(3)$, $k_2(4)$. 1 = SFA048, 2 = SFA055, 3 = SFA062, 4 = SFA069 $\sum_{i=1}^{4} \frac{\sqrt{2}}{24\pi} \beta_x^{3/2}(j) \, \mathbf{k}_2(j) \cos[3\phi_x(j)] = \frac{\sqrt{2}}{24\pi} \beta_x^{3/2}(1) \, \mathbf{k}_2(1) \cos[3\phi_x(1)]$ $\sum_{j=1}^{4} \frac{\sqrt{2}}{24\pi} \beta_x^{3/2}(j) \ \mathbf{k}_2(j) \ \sin[3\phi_x(j)] = \frac{\sqrt{2}}{24\pi} \beta_x^{3/2}(1) \ \mathbf{k}_2(1) \sin[3\phi_x(1)]$ $\sum_{j=1}^{4} \frac{\sqrt{2}}{8\pi} \beta_x^{1/2}(j) \beta_y(j) \ \mathbf{k}_2(j) \ \cos[\phi_x(j) + 2\phi_y(j)] = \frac{\sqrt{2}}{8\pi} \beta_x^{1/2}(1) \beta_y(1) \ \mathbf{k}_2(1) \cos[\phi_x(1) + 2\phi_y(1)]$ $\sum_{i=1}^{j-1} \frac{\sqrt{2}}{8\pi} \beta_x^{1/2}(j) \beta_y(j) \, \mathbf{k}_2(j) \sin[\phi_x(j) + 2\phi_y(j)] = \frac{\sqrt{2}}{8\pi} \beta_x^{1/2}(1) \beta_y(1) \, \mathbf{k}_2(1) \sin[\phi_x(1) + 2\phi_y(1)]$ SFA sext comp SFA sext comp 1+2 069 3+0 0.2 0.2 069

Remanent Field of Resonance Sextupole Magnet for Slow Extraction

- Eight magnets are used for the slow extraction.
- Remanent field was measured at the pole tip to be 5.2 gauss.
- K2 = 0.0123 m-2
- We degaussed the RSX magnets before the FX operation.

RSX magnet	Remnant Field (gauss)
021	-5.0
049	-5.0
093	+4.8
100	+5.0
121	+5.0
128	+6.0
172	-5.0
200	-5.5

Resonance Amplitude of 3vx = 67 and vx+2vy = 64before and after the degaussing of RSX

- Resonance Amplitude
- G3,0,67 = 0.033 (Before Degaussing)

 0.069 (Remanent of RSX)
 = 0.049 (After Degaussing)
- G1,2,64 = 0.139 (Before Degaussing)
 - -0.058 (Remanent of RSX)
 - = 0.079 (After Degaussing)

- For the correction of both 3vx = 67 and vx+2vy = 64
- SFA048 +0.64 A
- SFA055 –1.05 A
- SFA062 +1.04 A
- SFA069 -0.85 A

Correction of the 3^{rd} Order Resonances of both vx+2vy = 64 and 3vx = 67 (or 64)

- Beam losses were reduced with the correction during injection and the beginning of acceleration for high intensity beam of 380 kW equivalent.
- Correction of both $v_x + 2v_x = 64$ and $3v_x = 67$ for tune of (22.40, 20.75)
- Correction of both $v_x + 2v_x = 64$ and $3v_x = 64$ for tune of (21.36, 21.43)

Estimate of Resonance Amplitudes with Magnet Errors of B Q S

- Variation of main components from field measurements
- Variation of multipole components from field measurements
- Alignment errors σ 0.14 mm
- Rotation errors $\sigma 0.14$ mrad
- SAD calculation
- Resonance Amplitude
- G3,+0,67 = 0.039 (calc.)
- G3,+0,67 = 0.049 (meas.)
- G1,+2,64 = 0.061 (calc.)
- G1,+2,64 = 0.079 (meas.)
- G1, -2, -19 = 0.053

$$G_{3,0,64} = \frac{\sqrt{2}}{24\pi} \beta_x^{3/2} k_2 \exp[i(3\phi_x)]$$

Resonance Amplitude with magnet errors of B Q S

- Beta and phase modulation from the variation of main magnets would cause the third order resonances.
- Variation of sextupole magnet itself is probably not the main cause.

Summary

- Magnet errors cause non-structure resonances and reduce the dynamic aperture.
- The linear coupling resonance was corrected with skew quadrupole mangets.
- The half integer resonance and beta modulation caused by the FX septum magnets were corrected with the excitation of the trim coils of quadrupole magnets.
- Third order resonances have been corrected with the excitation of the trim coils of sextupole magnets.
- The beam survival was improved with the resonance corrections.