Present Status of the J-PARC MR IPM System and other Monitors (DCCT, BLM): Proposal for Gated IPM for J-PARC

US-Japan workshop on Accelerators and Beam Equipment for High Intensity Neutrino Beams 9-10/11/2016 J-PARC MR beam monitor G Kenichirou Satou

Contents

- IPM
 - IPM system improvements from the last workshop
 - Present status of IPM for J-PARC MR
 - Magnet system
 - The first measurement and Electron contamination issue
 - A collaboration works on Gated IPM system for J-PARC MR
 - The others collaboration works on IPM
 - Simulation code developments
 - CERN-PS IPM project
- BLM
 - New BLM data acquisition system
- DCCT
 - Performances of a present DCCT system
- Summary

IPM system at present

MR IPM specification

Magnet performance

Requirements of magnets

Туре	Pole gap[mm]	B at center [T]	Effective area [mm]	Error fields, Bx/By, Bz/By	Flatness	Cooling
С	220	0.25	(x,y,z)=-45~45, 40~40, 20~20	<1%	<5%	Water
Н	130	0.13	(x,y,z)=-45~45, 40~40, 20~20	<1%	<5%	Air

Test results: Electron collection with the magnetic field

- The first test ware made just before this summer shutdown, only 30 minutes × 2!!: Beam condition was 3 GeV 5E12 ppb 1 bunch inj.
- The turn by turn profile showed beam induced contamination, and it depends on HV
- The contaminant electrons appeared ~1.5 μs after the beam passage
- Mechanism of this contamination issue is under investigation

Sliced profile at selected time, 0.5, 1, 1.5, and 5.5 μ s after the beam injection

Proposal for New Gated IPM system for J-PARC MR

25 20 15

- Gated IPM system was installed in main injector of FERMI lab
 - **※FERMILAB-CONF-14-332-AD**
- Gated system will effectively reduce the MCP operation time -> MCP life will be improved
- This work includes,,,,
 - Development of a HV switching module
 - Install in the existing system
 - Performance test at FERMI and (or) J-PARC MR

When 100Hz 1% duty switching operation is used , only 20 turn profiles will be selected for each pulse. MCP life will be extended to 100 times longer than that in the case of non-gated system

Gated system for FNAL

- Thanks to FNAL group, we could learn,,,
 - Details of the switching system
 - Components
 - How does it works
 - When the "Gate Off," horizontal E field is generated and the B and E cross term force will sweep away the charges out from the effective area
- In our case, the maximum HV is ±50kV, collecting both ions (+HV) and electrons (-HV), thus if we use the same design,,,,
 - All the components will be bigger than these of the FNAL case -> 5 times??
 - Need more careful design
 - And above all, we should find a "special" resister for the last resister in chain, between mesh and ground, on which the HV=50kV can be applied

A possible solution for J-PARC IPM

- This solution can make required switching voltage decrees and make design works rather easier and simpler
- Some resisters in the IPM chamber should be replaced by ones which is excellent in dielectric breakdown voltage
- This will also make the horizontal E when "Gated Off", but it will be rather deformed and asymmetric than the FNAL case
- However, the transversal beam E field can help sweeping out the charges during the beam passage, and this effect is likely to be essential for the particles generated around 1σ area in a beam profile
- Need detail simulations on charge motions in the "Gated Off" field and the beam fields as well

Present schedule

- This fiscal year, 2016, start form Apr.
 - Design works on <- we are here
 - Switching system
 - Circuit
 - Production cost estimates
 - Simulation on charge motions
- Next fiscal year, 2017
 - Discussion on simulation works with FNAL group
 - Parts procurement
 - HV switch, HV C, resister
 - Construction
 - Test @J-PARC or @FERMI
 - IPM chamber modification during summer shutdown: resister replacements and any other changes will make
- The fiscal year, 2018
 - Install a HV gated BOX in our system and test
 - Discussion on performance tests with FNAL group @ mini-workshop??

The others collaboration works on IPM: Simulation code

- IPM simulation code collaboration had begun from 2015 followed by the first collaboration meeting at CERN in 2016
- J-PARC, GSI, CERN, FNAL, IFMIF, RAL, ESS, CEA
- Please visit the web site, https://twiki.cern.ch/twiki/bin/view/I PMSim

The first meeting of the collaboration took place at CERN in March 2016

Set parameters: Beam profile,	t=t+∆t
Residual gas, Number of	Estimate instantaneous beam
Macro Particle (MP)	intensity
Evaluate the normalized beam space charge electric fields (Es) at each rectangle grid location	Estimate the fields at a MP position: Linear interpolation Compute MP motion while t~t+Δt, and estimate the next position and
Load grid data for cage electric field and magnetic field	MP reach the detector ?
Evaluate ionization cross section	No Yes
Generate MP: Estimate initial	Loop end
conditions (x_0 , y_0 , z_0 , t_0 , v_{x0} , v_{y0} , v_{z0})	Post processing

Flow chart of the J-PARC code, IPMsim3D

Name/Lab	Language	Ionization	Guiding	Beam		Tracking	
			field	shape	field		
GSI code	C++	simple	uniform	parabolic	3D analytic	numeric	
		DDCS	E,B	3D	relativ.	R-K 4th order	
PyECLOUD-BGI	python	realistic	uniform	Gauss	2D analytic	analytic	
/CERN		DDCS	E,B	3D	relativ. only		
FNAL	MATLAB	simple	3D map	arbitrary	3D numeric	num. MATLAB	
		SDCS	E,B		relativ. (E and B)	rel. eq. of motion	
ISIS	C++	at rest	CST map	arbitrary	2D numeric (CST)	numeric	
			E only	(CST)	non-relativ.	Euler 2nd order	
IFMIF	C++	at rest	Lorenz-3E map	General.	numeric (Lorenz-3E)		
			E only	Gauss	non-relativ.		
ESS	MATLAB	at rest	uniform	Gauss	3D numeric (MATLAB)	numeric	
			E,B	3D	relativ.	MATLAB R-K	
IPMSim3D	python	realistic	2D/3Dmap	Gauss	2D numeric (SOR)	numeric	
/J-PARC		DDCS	E, B	3D	relativ. only	R-K 4 th order	

Different kinds of IPM codes: Courtesy of M. Sapinski See also TUPG71, IBIC16

The others collaboration works on IPM: CERN-PS IPM

- The collaboration works on next IPM for CERN-PS is now in progress
- Timepixe 3 position sensitive Si detector is used for charged particle detection
- We have proposed an ion trap structure to suppress ion collisions thus secondary electron generation on electrode surface
 - If it works well, we will use the same ion trap structure in our system, next year???
- Design works were finished by 2015 and construction of magnet system is now ongoing
- We are waiting for the installing and the first data

New BLM system

- Air ionization chambers (ion chamber) were installed near old BLMs, proportional counter type BLM
- The dual system will cover wide range of beam loss
- New BLM amp and data-taking system was installed and started operation from 2 weeks ago

AIC and P-BLM: Dual system

Photo of inside electrodes of AIC

BLM2

- New I-V conversion amp
 - Installed at PS building: cable C=10nF-30nF
 - Conversion impedance: 1MΩ, 10 times higher than the old one
 - 50kHz (now limited down to 20kHz):
 ~50 times faster
 - Isolation
- New ADC system
 - VME based system
 - 1MS/s 24bit ADC: old one is 100 times conversions per pulse with 4000 points resolution in full scale
 - Shot by shot offset subtraction
 - Ring buffer like storage for >20s data length
 - Digital WF integration
 - Digital comparator for MPS system: Waveform data and integrated data
 - 2 DAC outputs

DCCT

- DCCT for J-PARC MR was firstly designed to obtain 1% accuracy, and the thus the present performance is 0.1% in precision but 0.6% in accuracy, due to limited open loop gain and imperfect matching of two current sensing resisters in 2 feed back loops
- We would like to improve this DCCT to measure beam power loss in more good accuracy, within 0.1% level

Step responses should be same, but,,,

Open and closed loop gain

Summary

- IPM
 - The magnet system was installed at one IPM system out of three and first test was done just before this summer shut down
 - The beam induced electron contamination issue is now on investigation
 - The HV gated system was proposed, and start working from last week with the great helps from FNAL IPM group
 - The possible solution for the switching system for J-PARC was presented
- BLM
 - The new data taking system had been developing, and about 2 weeks ago, the system started operation
- DCCT
 - The parallel feed-back type DCCT is used for our system
 - Its accuracy is 0.6%, and this limitation is mainly due to the limited open loop gain and mismatching of the 2 I-V conversion resisters in 2 different feed back loops
 - The < 0.1% in resolution and also in precision is needed, on the beam commissioning point of view, to identify the beam power loss in detail -> < 100W @ inj. @1MW ope.