Recent Status of J-PARC Neutrino Beam-line

T. Nakadaira (KEK) for J-PARC neutrino experimental facility

Outline

- Overview of J-PARC neutrino beam-line
- Beam operation history
- Recent status (troubles)
- Upgrade plans
- Summary

J-PARC neutrino primary beam-line

Target :graphite rod f26mm,L=900mm

Optical Transition Radiation (OTR) Profile monitor

J-PARC neutrino secondary beam-line

Operation history

- Beam quality is kept well.
 - Flux at ND/SK is estimated with ~10% uncertainty.
 - * 425kW beam operation achieved. $\rightarrow 2.27 \times 10^{14} \text{ p/pulse}$
 - 440kW trial is also performed.
- By 2016 May, 1.510×10²¹ POT is supplied for physics data for T2K.
 - v-mode : 7.57×10²⁰ + v̄-mode : 7.53×10²⁰
- Beam operation for neutrino beam-line is resumed from Oct. 2016

Big maintenance

- For secondary beam-line, it is necessary to open the concrete shields, He vessel by remote operation.
 - 2011: Inspection after the big earthquake.
 - * 2014: Replacement of all three horns
 - Water-leak was happened at horn itself.
 - 2015: Target cooling He leak.
 - Inspection and repair was done.
 - * OTR system also met the trouble.
 - * 2016: No maintenance in He vessel.
 - Inspection of the outside of beam-window.

2015 Target He leak problem

★ Target: ~23kW heat load at 750kW → Cooled by He gas

In May 2015, Pressure of He gas become unstable.

* ~ 10⁻¹ Pa m³/h (Requirement: ~ 10⁻³ Pa m³/h)

2016 Apr, May(Normal)

He gas temperture gas at taiget (X) TARCE: He (-12:19:099) Beam Power (Ke Checklistrunstatus (0:405) NUTGT:HEORCT TOD/M TARCET: He (24:400:99:500degC) NUTGT:HECIRC: TGD/M TARCET: He (22:400:31:300degC)
NUTGT:HECIRC: He (24:4080:474:435Nm3:h) NUTGT:HECIRC: NV_BYP TARCET: He (46:185:58:635:h) NUTGT:HEORC: P_HE_RET TARCET: He (0:057:0.080MPaC) NUTGT:HECIRC: P_HE_SUC TARCET: He (0:036:0.057MPaG)
NUTGT:HECIRC: P_HE_SUP TARCET: He (0:130:0.146MPaG)
NUTGT:HECIRC: P_HE_SUP TARCET: He (0:130:0.146MPaG)

Target :graphite rod φ26mm.L=900mm

2015 Target He leak problem

- There is no He leak found the He tubes outside TS He vessel, we have decided to open He vessel for further inspection.
- * There is no leak at the top of horn module \rightarrow Horn + target is transported to maint. area.

Target He-tube inspection at maintenance area

- At the maintenance area, the inspection by manipulator is performed.
 - Air is sampled by hand-pump and checked by handy gas detector.
 - \rightarrow He leak was found at ceramic break!
 - ★ Fixing the leak by compound was tried.
 → We have confirmed that there is no other leak point.

Replacement of the He tube

- Improved He tube with ceramic break and the remote exchange tools are prepared by RAL and KEK. The exchange work is done by the corroboration among RAL, TRIUMF and KEK.
- ★ Distortion of U-shape part made by cold working may be cause of the trouble \rightarrow C-shape with miter joint (welding) is adopted.

OTR inspection

- OTR system: Mirror alignment check
- ★ Trouble in the disk rotation: Required torque become large.
 It can not to be rotated by remote controlled motor.
 → Now we are using 1 Ti foil.

Beam window inspection

- In 2016, we have checked the beam window by removing the upper shields to check what kind of work is necessary for exchanging with spares.
 - * "Pillow seal" used for Vacuum / He-gas requires the very good surface condition. We have to consider the method to clean up, if necessary.

Target Station (TOP View Measured points

Radiation level [mSv/hour]

In 2016

To achieve 750 kW p-beam operation

- Upgrade the beam-line for 1Hz operation.
 - ★ Horns : 2 PS + 2 old trans. + 3 horns \rightarrow 3 PS + 3 new trans. + 3 horns.
 - Currently used pulse transformers are produced for 250kA operation for K2K in '90s.
 - * New pulse transformers for 320kA is under design. $\rightarrow \sim 10\%$ improvement for v flux / POT is also expected.
 - DAQ for beam monitors.
 - ★ Beam interlock system.
 → The module that issues the fast Inhibit signal using the beam monitor outputs processed by FPGA.

To achieve 750 kW p-beam operation

- Upgrade the beam-line for 1Hz operation.
 - ★ Horns : 2 PS + 2 old trans. + 3 horns → 3 PS + 3 new trans. + 3 horns.
 - Currently used pulse transformers are produced for 250kA operation for K2K in '90s.
 - ★ New pulse transformers for 320kA is under design.
 → ~10% improvement for v flux / POT is also expected.
 - DAQ for beam monitors.
 - ★ Beam interlock system.
 → The module that issues the fast Inhibit signal using the beam monitor outputs processed by FPGA.

14

Future plans

- The T2K experiment submitted the proposal of extended data accumulation up to 2×10²² POT to J-PARC PAC in June 2016.
 - PAC recommended the Stage-1 status in July 2016.
 - Cf. J-PARC has 2-stage approval.
 - Stage-1 status: Physics interest is recognized.
 - Stage-2 approval: Green signal for execution.
 - ~1.3MW beam power is expected.
- New short base line experiment E62 (NuPrism) got stage-1 status, too.
- The J-PARC upgrade for the future long base-line neutrino experiment using Hyper-K is recognized as KEK Project-implementation-plan (PIP) with high priority.

J-PARC MR-FX beam power upgrade strategy					
	Achieved (User beam)		Mid-term plan		Long-term plan
Protons/pulse	$2.2{ imes}10^{14}$		2.2×10^{14}		$3.2{ imes}10^{14}$
Repetition cycle	$2.48~\mathrm{s}$		1.3 s		1.16 s
Beam power	420kW		800kW		$1.3 \mathrm{MW}$
Protons / pulse required to achieve original design intensity (750kW) has been achieved.					

To do list for >1MW beam power

- Reinforce the radiation shield of the Target Station.
- Enlarge the processing capacity of the radioactive waste (activated cooling water, etc.)

See next slide

- Reinforce the cooling capability of target, electromagnetic horns, TS He vessel, Decay Volume, and beam-dump.
- Enlarge the aperture of the magnet for upstream part of primary proton transport (if necessary).
- Primary beam monitors that cause less beam-loss.
- Sophistication of remote maintenance procedure for activated equipment.

Reinforcement of Radio-activated water treatment

Target station (TS + Upstream of DV) : Plans in JFY2018

- NU3 (Downstream of DV + BD) : Started from JFY2015~
 - Transport activated water to the facility of JAEA with tank track.

Summary

- * J-PARC Neutrino beam-line met the troubles in target system in 2015. It was fixed by remote operation.
- In 2016 beam time, there is no severe trouble that takes long maintenance period.
 - No trouble in 440kW trial.
- * There are several work to achieve ~1Hz operation and >1MW beam.
 - * We plan to do the upgrade work that requires long shutdown in JFY2018 during the J-PARC MR power supply upgrade as much as possible.