T2K Muon Monitor

Keigo Nakamura Kyoto Univerity for MUMON group

1

contents

- \cdot introduction
- operation status
- R&D for Ionization Chamber
- Other R&D detectors and measurement

T2K Muon Monitor

- · 7x7 Si PIN photodiode array
- · 7x7 Ionization Chamber array
- muon flux ~ 10^5 /cm^2

Si PIN photodiode

- · Made by Hamamatsu photonics.
- · active area of 10 × 10 mm^2, depletion layer thickness of 300 μ m.
- \cdot bias voltage 80V.
- · mounted on the Ceramic base to replace it easily.

Ionization chamber

- Active area: 75mm×75mm
- thickness : 3mm
- Gas : $Ar+N_2$ (2%)(<~300kW)
 - : He+N₂ (1%)(>~300kW)

5

- N₂ gas : mixed for faster and stable response
- HV:200V

Signal and Profile

- taking data with 50MHz sampling FDAC
- integrates the signal and calculates its charge bunch by bunch for each channels.
- $\cdot\,$ make 2D histogram of the charge and fit with 2D gaussian.

Operation status

MUMON Expert

- · Muon Monitor in T2K is maintained mainly by Kyoto U student.
 - Designed by M.Yokoyama, Matsuoka, Kubo
- · Combiner: M.Yokoyama (Kyoto.U->U. Tokyo) -> A.K. Ichikawa (Kyoto U)
- · 1st expert: Matsuoka,Kubo(~2010)
- · 2nd expert: Suzuki,Murakami (2009-2013)
- · 3rd expert: Hiraki (2012-2015)
- · 4th expert: K. G. Nakamura (2014~2017?)
- · 5th expert: Uno, Asida ? (2016~)

requirement for MUMON

- · For physics,
 - · the beam direction is within 1mrad (\pm 10cm)
 - · Cross check with INGRID (on-axis neutrino detector)
 - Si total yield (pC)/CT (ppp) is within mean ±5%
- · For beam operation
 - Measure the beam bunch by bunch and feedback to the beam operation quickly.
 - · Check the stability or reproductivity of the 2nd beam line.

center stability for one run

width stability for one run

Si yield and horn current stability for one run

Horn current correction

- separate the horn current effect from other effect (e.g. degradation of Si)
- · Measure the yield by changing horn current and calculate the correction factor.
- $\cdot\,$ We noticed the horn current at Power supply and the one at target.
 - · Corrected with the current at power supply.

Horn current correction

- separate the horn current effect from other effect (e.g. degradation of Si)
- · Measure the yield by changing horn current and calculate the correction factor.
- $\cdot\,$ We noticed the horn current at Power supply and the one at target.
 - Corrected with the current at power supply.

Long term history plot

Long term yield plot

Long term yield plot

R&D for lonization chamber

Ionization chamber

- Active area: 75mm×75mm
- thickness : 3mm
- Gas : Ar+N₂ (2%)(<~300kW)
 - : He+N₂ (1%)(>~300kW)

5

- N₂ gas : mixed for faster and stable response
- HV:200V

Gas change

- Previous strategy for the gas is changing Ar -> He to avoid the effect of non-linearity.
- $\cdot\,$ We tested He in 2014.
- · Established gas change procedure.-> Developed gas sampling system.

Gas sampling system

Linearity in beam test

direction stability in run62 & run63 RHC mode

waveforms

Signal

 \cdot Pileup due to the ion was observed.

- Ionized He makes He2 molecules and quickly transfers its charge to N2 in our situation.
- \cdot N2+He2 drift velocity is faster than Ar one.
- Slower decay constant than Ar.
- · Large fluctuation due to small S/N ratio.
 - \cdot The yield become 2/3 for RHC.
 - \cdot Gas replacement takes ~10 days and can't change so frequently.

Other Gas ?

- Simulated by Garfield++
- calculated drift velocity of Ne.
- seems good property but it's too expensive now!

Non linearity at last bunch

- $\cdot\,$ We decided to keep using Ar for a while.
- \cdot non-linearity was observed in the latter bunches.
- · Expected electron recombination but this may happen another reason.

electric field distortion by ion

- Due to the ions, the E fields distorted and make the drift velocity slower
 - Can't reach to the electrodes within the integration time.
 - Signal shape is also changed.

Operation with higher bias voltage

- Applying higher voltage the easiest way.
- Intensity scan with various HV
- Linearity recovered with higher voltage

remaining concern

- Leak current was observed ~300V and we cannot apply higher voltage.
 - Operating 270V now (~420kW).
 - If we can apply higher voltage ~400V(?) 1.3MW beam operation will be possible…
 - Another option
 - Lower gas pressure operation ?
 - Thin gap (1mm spacing?) chamber ?
 - · Giving up using Ar when FHC?

- Similar problem was already studied by Bob Zwaska in his Ph.D thesis.
- He did some theoretical calculation in his thesis and we are trying to evaluate it qualitatively with his calculation.

Other R&D status

R&D for semiconductor detector

- $\cdot\,$ Si is believed to be not so radiation-hard.
 - Previous study Si yield will decrease after 8.0x10^20 POT for FHC(->3.2x10^20POT?).
- $\cdot\,$ In this estimation NIEL scaling is used.
 - $\cdot\,$ electron dose -> neutron dose.
 - · Unreliable these estimations.
- · Hints from non-linearity but too small effect in our situation (just 1% difference)

Diamond and SiC detector

- · Similar structure to Si.
- · Both of them is believed to be radiation hard.
- $\cdot\,$ SiC signal is too small to use as muon monitor.
- · Diamond detector response depends on the crystal quality.
- $\cdot\,$ Study is stacked mainly due to lack of man power…

PMT as Muon Monitor

- based on Secondary Emission Monitor
 - SEM is working stable in rad-hard environment.
- SE yield should be small for muon
 ->Multiplication-> EMT!
- · PMT is the easiest for demonstration of this principle.

gain calculation

 Assuming SE electrons are emitted only from the first dynode, the yield can be written as:

$$Q = e \cdot A \cdot \phi \cdot \delta \cdot N \cdot G(C)$$

φ:flux: 9.72e4/cm2/10¹²POT A:area of detector: 2.5x2.5cm² δ: SE yield G:gain

- \cdot G=10^3-10^4 gain is needed in our case.
- Typical PMT has ~10^6 gain modified base circuit

signals

· Clear signal was observed!

Stability

Signal is smaller than Si but the fluctuation is same as Si

Linearity

 Fluctuation is large due to small yield but PMT seems to have good linearity.

Future Prospect

- new PMT without photo-cathode was purchased.
- \cdot will be installed soon.
- · Check long term stability

muon flux measurement

emulsion measurement

- in 2010, Bern&Kobe group conducted an emulsion measurement @MUMON.
- a horizontal array of emulsion trackers were put on downstream end of MUMON and irradiated low intensity shots

Our beam MC and MC tuning

p+C interaction in the target

current

current

π

hadron production tuning

input from CERN NA61

Flux predictions

based on reliable experimental results

data MC comparison (250kA)

tuned/FLUKA = 1.20

- We updated flux tuning with NA61/SHINE
 30GeV/c short replica target data.
- We took RHC data for emulsion in 2014.
- MC is updating now.

Future upgrade?

We have no concrete plan yet…

Summary

- T2K Muon Monitor is working very stable so far.
- Several R&D is ongoing including new detector.
- · We don't have any concrete upgrade plan yet.
 - Any idea and requests are welcome.

PMT with low bias voltage

