LBNF Ionization Detector Muon Monitors

Jeremy Lopez University of Colorado 9 November 2016

LBNF Beamline Overview

Monitors downstream of absorber, upstream of ND Basically unlimited statistics. Measurements limited by:

- 1) Detector performance
- 2) Absorber geometry (energy threshold, profile shaping, etc)

Muon Measurements

Possible Technologies: Gas Ionization Counters

- Used in T2K, NuMI, CNGS beamlines
- Simple design (parallel plates with voltage applied)
- Reliable, don't age much
- Gas needs to be refilled
- Slow signal development not great for timing or studying beam substructure

Possible Technologies: Diamond Detectors

- Have been used in T2K, CNGS beamlines but not in main muon monitor array
- Very fast signals good timing
- May be less susceptible to pileup
- More rad hard than other solid-state detectors
- Very expensive can save some money by producing detectors ourselves

Possible Technologies: Silicon Photodiodes

- Used in T2K beamline
- Have many of the same advantages as diamond
- Need to be replaced fairly often
- Commercial device
- Low cost

LBNF vs Other Beamlines

- 12.5 x 10¹² POT / bunch, 6 bunches / spill
- Muon rate in alcove ~ 10x NuMI alcove 1 and 2x T2K (at design power)
 - Detectors must deal with harsher environment, larger signals
 - How will this affect signal linearity?
 - How long will detectors last?

Tests in NuMI Alcove

Placed detectors in alcove 2 12 m or rock behind hadron absorber Muon rate $\sim 1/4$ that of alcove 1

Diamonds in Alcove 2

Diamonds

- 3 diamonds placed behind alcove 2 muon monitor
- Cividec detectors, previously used in CNGS
- Data taken from Spring 2015 until present (work ongoing)

Diamond Detector Signal

Diamond 1

Zoom in on Signal

Diamond 1

53 MHz bunches

Some Initial Results

- All work in progress
 - Signal linearity
 - Resolution
 - Gain drift after detector HV turn on
 - Year-to-year gain variation
 - Signal shape

Signal Linearity

Signal Linearity

- Nonlinearity <1% in region with good statistics
- ~4% looking over full data set

- Gaussian fit: σ =0.3%
- RMS: 0.4%
- Ignoring nonlinearity & long term gain drift:
 - Resolution much better than 1% for a single detector

Neutrino/Antineutrino Ratio

- Antineutrino to neutrino signal ratio is: 0.67±0.02
- Detector and alcove simulation with G4NuMI input: 0.68±0.03 (muon flux only, no energy loss)

Turn-On Effects: Short Term

 After turning detector off for a weekend, see gain rapidly increasing & then settling over first hour or so

Turn-On Effects: Long Term

 Signal/POT continues to increase by several % over ~1 month after turning detector on

11/09/16

Ionization Detectors

Year to Year Variation

- Note: Negative signals
- Gain settles on different value: 2% drop from 2015 to 2016
- Will this continue? Should continue if due to detector aging effects

Signal Shape

- Shape doesn't perfectly match proton signal
- Significant fraction of signal seems to be associated with ~2 µs decay
 - Muon capture/decay?
 - Materials activation?
 - Electronics?

Hardware Work

- Have some silicon photodiodes
- Put in alcove 2, may help resolve questions about signal shape

- Working on building a diamond detector from a bare diamond at CU
- May be much more cost-effective than prepackaged detectors
- New diamond, different electronics see how performance compares to commercial devices

Conclusions

- Muon monitoring at LBNF will be more challenging than at existing beams due to much larger fluxes
- Solid-state detectors offer many possible advantages over more standard gas detectors, but also may have some drawbacks
- We have experience operating detectors in a beamline, are working on constructing our own detectors to test at NuMI