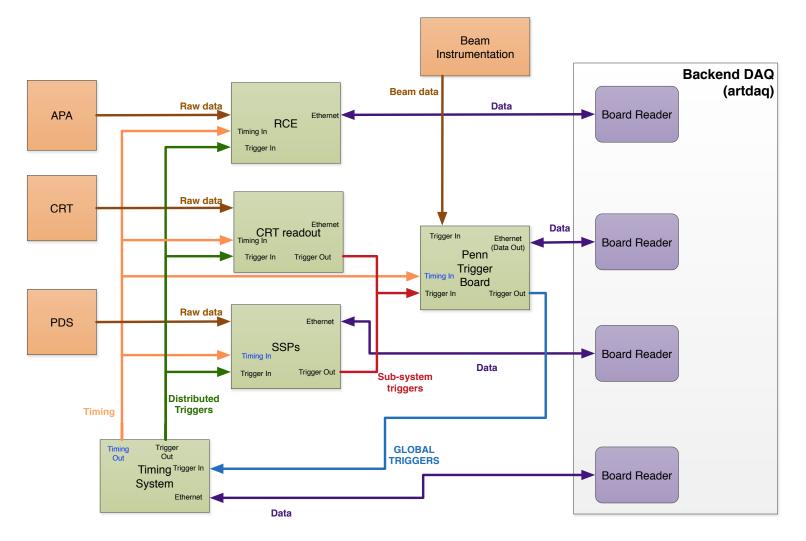
ProtoDUNE-SP Trigger and Timing System

Dave Newbold, for Bristol, Oxford, UPenn, W&M groups ProtoDUNE DAQ Review 3rd November 2016

Contents

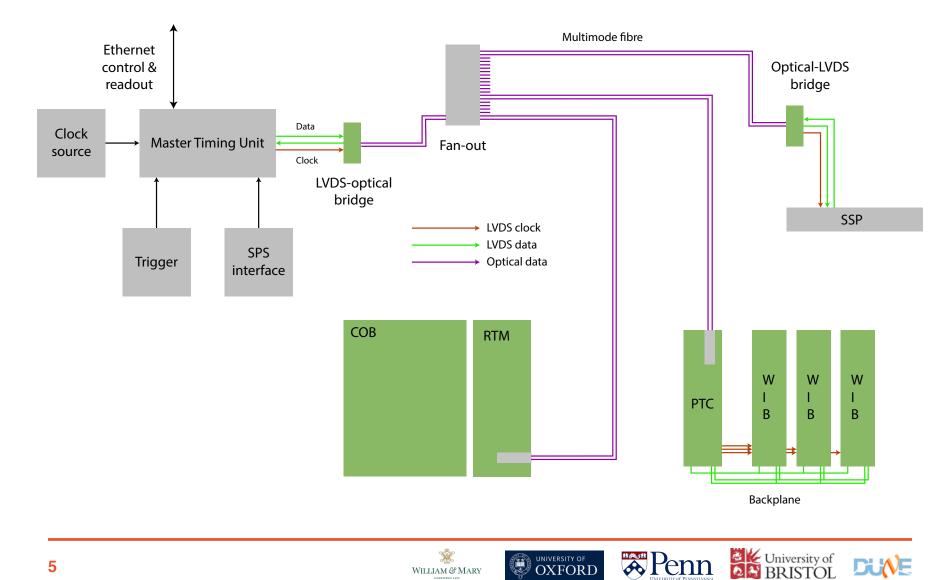
- Introduction & specification
- Summary of status
- For {trigger, timing system}
 - Interfaces
 - Design
 - Implementation
 - Testing
- Risks
- Trigger documentation: DUNE-doc-1583-v1
- Timing protocol and interface specification: DUNE-doc-1651-v3

Introduction


- ProtoDUNE-SP runs in externally triggered, synchronous mode
 - Physics and performance criteria require a beam trigger
 - Readout systems must be closely synchronised in time
 - For simplicity, operate with single common phase-aligned clock
- Two closely-coupled systems
 - Trigger system (CTB) interfaces to beam instrumentation and other fast signals, produces trigger primitives (Penn)
 - Timing system distributes common 50MHz detector clock, along with synchronisation and trigger commands (Bristol)
- The trigger and timing are the 'heart of the system'
 - Emphasise simplicity; robustness; flexibility; early availability

System Overview

Ŵ



Timing System View

Summary of Status and Schedule

- Trigger
 - Existing hardware, firmware, software successfully used in 35t
 - Modest firmware and timing changes for ProtoDUNE-SP
 - Work well under way to finalise hardware interfaces
- Timing system
 - New system, re-using proven hardware and firmware components
 - Interfaces to 'endpoints' (readout boards) necessarily vary
 - Integration of hardware and firmware components under way
 - Functional prototype: Dec 2016; extended functions Feb 2017
 - Final hardware: Apr 2017; Installation: June 2017
 - Software is at an earlier stage, but not expected to be critical path

Specification

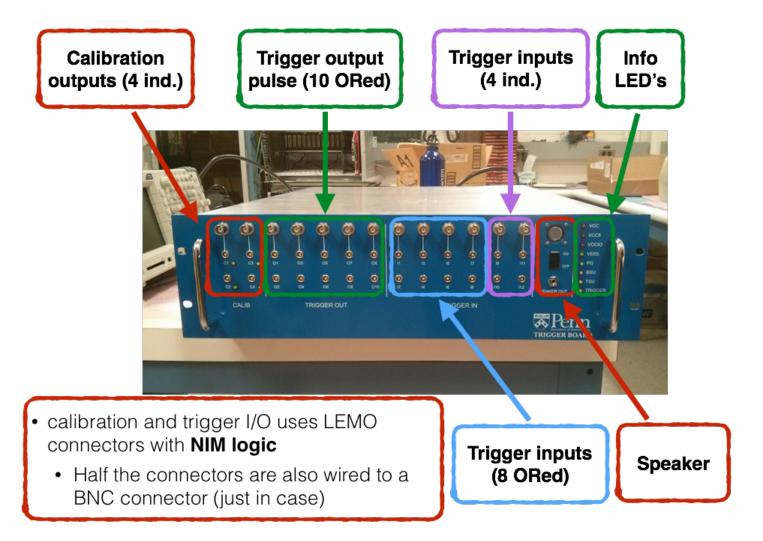
- CTB
 - Receive {BI, CRT, PDS} input
 - Sample and re-sync to ProtoDUNE clock domain where necessary
 - Logic and coincidence finding to form global trigger
 - Time stamp input hits and triggers, keep event count, record trigger type, error conditions – and stream to DAQ
- Timing
 - Distribute high quality clock, and synchronisation signals
 - Issue trigger, calibration and state change signals
 - Monitor timing alignment of all system components
 - Throttle triggers under software or back-pressure control if needed
 - Time-stamp all received and issued signals and stream to DAQ
- Operate with nominal 25Hz trigger rate (but can cope with far higher)

Trigger: Interfaces

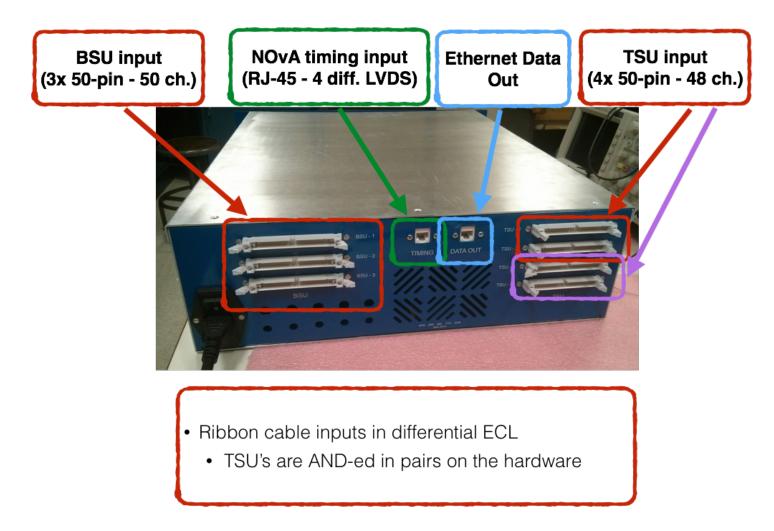
- The interfaces are mostly the same as in DUNE 35t
- Changes needed:
 - Front-end interface (different I/O logic), including timing
 - Firmware (different trigger and readout logic)
- Details of interface to each sub-system currently being collected:
 - CRT provides 40 trigger signals
 - PDS provides 24 trigger signals
 - Beam provides < 12 input signals
 - Timing interface (bi-directional) via standard serial timing link

WILLIAM & MARY

• No trigger from TPC (too slow)



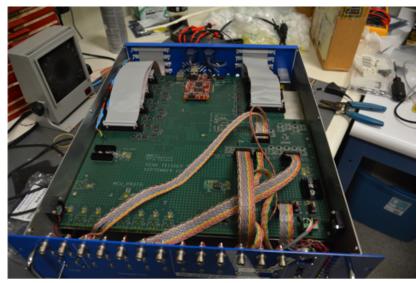
Trigger: Physical Interface (Front)


WILLIAM & MARY

University of BRISTOL

Penn

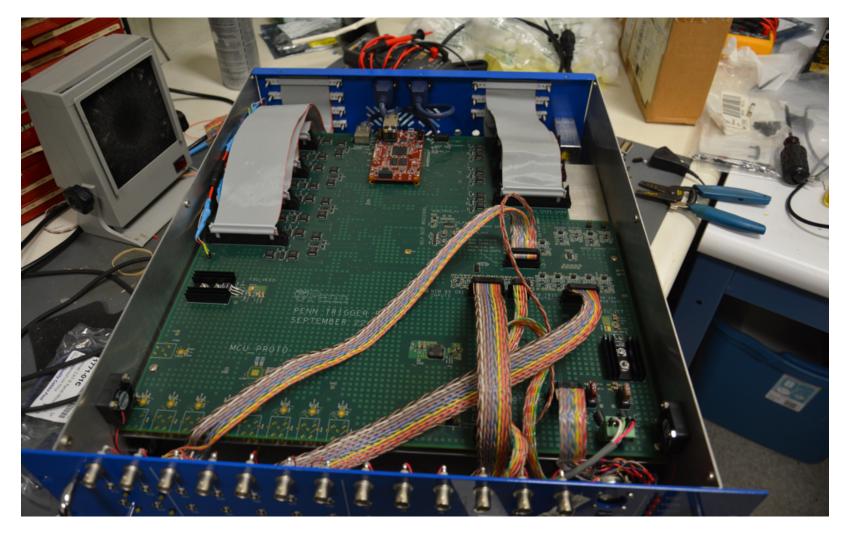
Trigger: Physical Interface (Back)



Trigger: Implementation (HW)

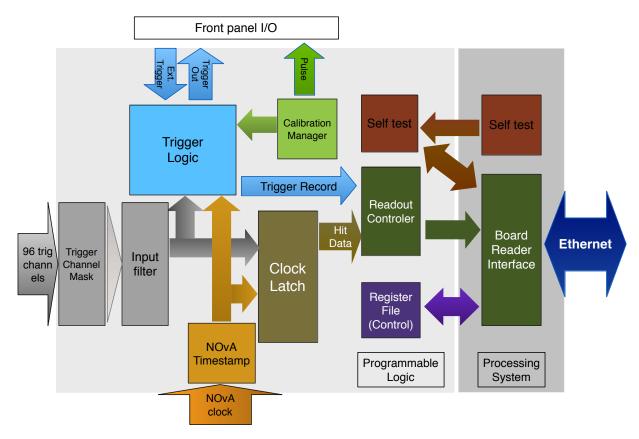
WILLIAM & MARY

- Xilinx Zynq-7Z020 SoC
 - 1 GB DDR3 RAM
 - Gigabit Ethernet
 - 2 ARM Cortex-A9 cores
 - The CTB runs a linux distribution inside
 - Most of existing firmware and software will be re-used
- Rest of hardware is physical interface to FPGA module



11

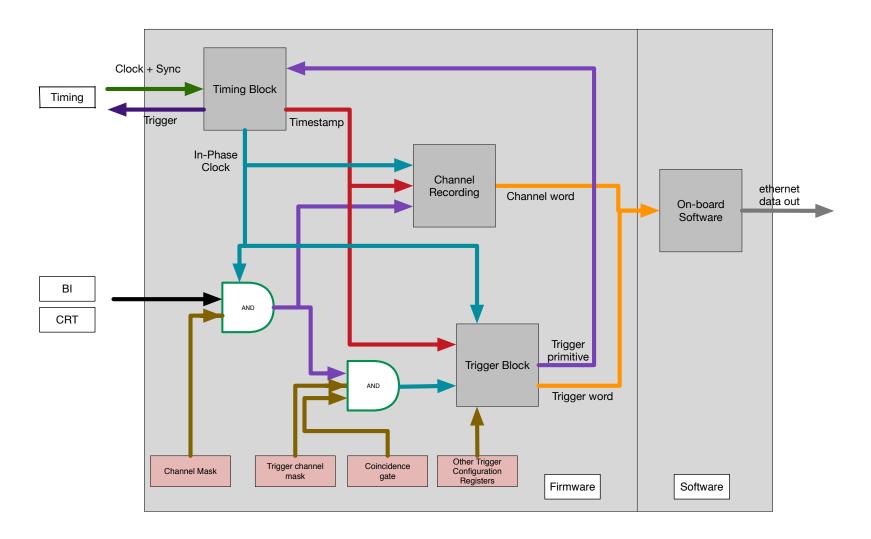
Trigger: Implementation (HW)



Trigger: Implementation (FW)

- Most of the firmware remains unchanged from 35t
 - Rewrite trigger / timing block / data structure

Ŵ



Trigger: Implementation (FW)

Ň

Trigger: Testing

- Remaining steps for definition of final system:
 - Finalize definition of input counts and characteristics (Nov 2016)
 - HW (interface) and FW modifications for timing (Nov 2016)
 - Definition and implementation of trigger conditions (Mar 2017)
- Testing programme:
 - At UPenn (by Jan 2017)
 - "smoke tests" of hardware modifications
 - Logical tests; functional tests with pulser
 - At CERN:
 - Installation (June 2017)
 - Functional tests in test stand with artdaq (Oct 2017)
 - Integration tests with other systems, incl. timing (Dec 2017)

Timing: Master Interfaces

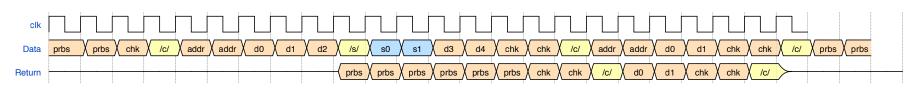
- Master clock source
 - 10MHz reference, time-of-day via fibre from SPS control room
 - This ensures synchronisation with beam instrumentation
- Trigger system
 - Interface via copper serial interface; boxes are adjacent
- Condition signals
 - e.g. SPS start-of-spill warning, NIM format
- Control and DAQ
 - Gigabit Ethernet
 - A rolling record of all received and issued timing signals is kept
- Downstream timing system
 - Multimode optical fibre, consistent with detector grounding scheme

Timing: Endpoint Interfaces

- Timing protocol
 - Clock and data are carried as a single 8b10b encoded optical signal
 - 500Mb/s data rate
 - Allows use of COTS optics components (SFP modules)
 - Return path allows self-test, accurate phase alignment (<1ns)
- Endpoint interfaces
 - Style 1: direct optical connection (COB, WIB-PTC)
 - Style 2: LVDS connection, via converter card (SSP, muon veto)
 - Electrically backward-compatible with NOvA interface
 - Protocol is not compatible; firmware-level change

Timing: Design

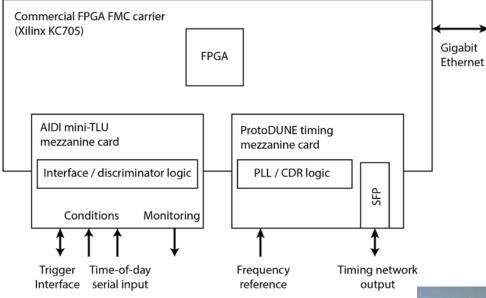
- Protocol design
 - Uses concepts from CERN TTC, NOvA, SOLID
 - Higher performance design using modern COTS components
 - Suitable for optical (MM/SM) or galvanic transmission
 - ProtoDUNE will be a testbed for DUNE timing system
- Hardware design
 - COTS FPGA hardware; avoids substantial design effort
 - Timing system specific functions integrated onto single multi-purpose FMC module
 - AIDA TLU module re-used as general IO interface
- Firmware and control interface design
 - Based around well-tested IPbus control / SoC system
 - In use in ~15 experiments at CERN, FNAL, and elsewhere

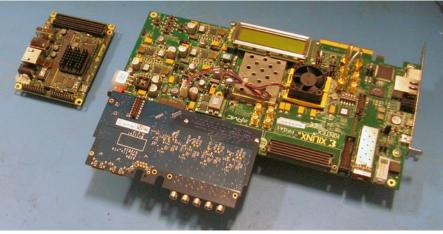


Timing Protocol

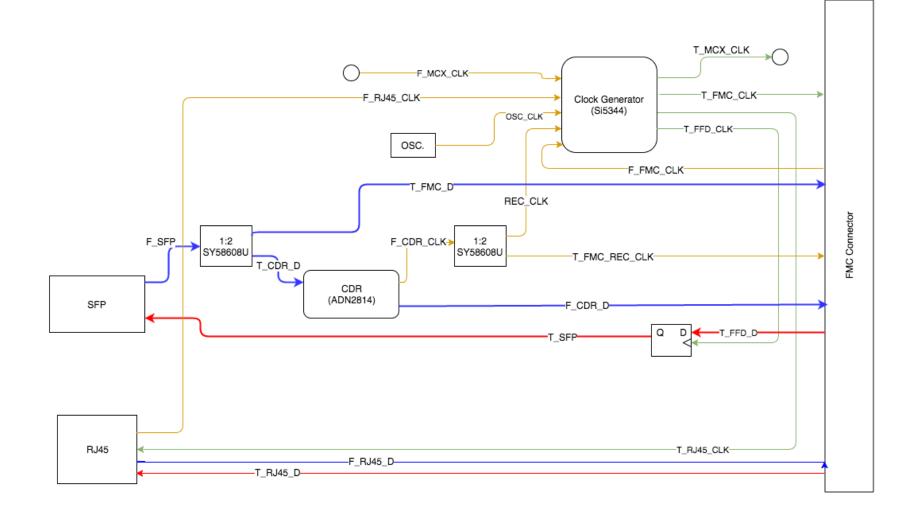
- On the wire:
 - 500Mb/s 8b10b encoded signal, DC-balanced, optical (850nm) or galvanic
 - Compatible with COTS optics, connectors, clock recovery devices
 - Forward and return paths for two-way communication
 - "Intra-FPGA" firmware implementation has been thoroughly tested
- Two command types
 - Synchronous cmds pre-empt other traffic, propagate with *fixed latency* of <1us
 - Fundamental commands: 'reset timestamp counter', 'trigger'
 - Asynchronous cmd for internal and endpoint control, system setup
 - Master FW receives cmds from SW, trigger, sync state machine; arbitrates

UNIVERSITY OF

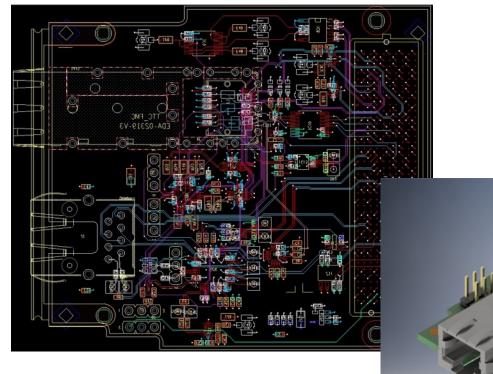

OXFORD

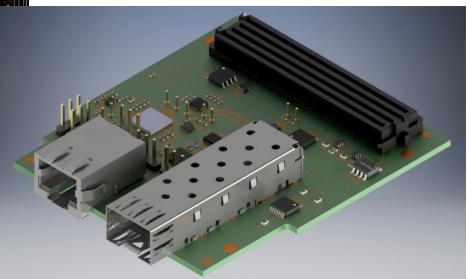


Timing: Master Implementation



Timing: FMC Implementation



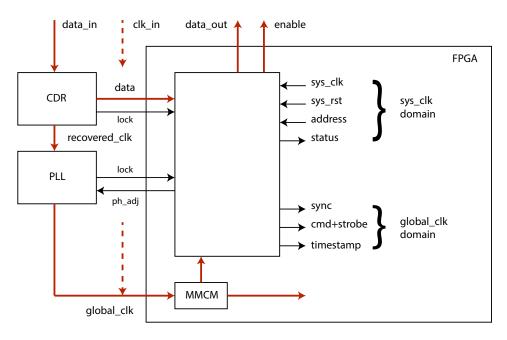


Timing: FMC Implementation

WILLIAM & MARY

Cards expected in Bristol this week

Timing: Distribution


- For test-stands
 - Passive COTS optical splitter / combiner will run up to 16 endpoints
 - Limit is from optical power budget of SFPs
- Final system has ~48 endpoints, plus spare capacity for safety
- Concept A: passive optical splitter / combiner
 - Simple, familiar technology
 - Commercial external laser head for power budget safety implications
- Concept B: active fan-out / fan-in based on COTS FPGA board
 - Requires additional HW; slightly worse jitter performance
 - Laser safety no issue; allows flexible back-pressure system if needed
- We favour Concept B, as long as schedule can accommodate it
 - Final decision in Feb 2017

Timing: Endpoint Implementation

- Endpoints receive:
 - Phase-aligned clock from external or FPGA PLL
 - Synchronous trigger and timing signals, aligned to ~1ns across system

- Setup and control data in packet format
- Endpoints transmit:
 - Status information; back pressure signals if required

Timing: Endpoint Implementation

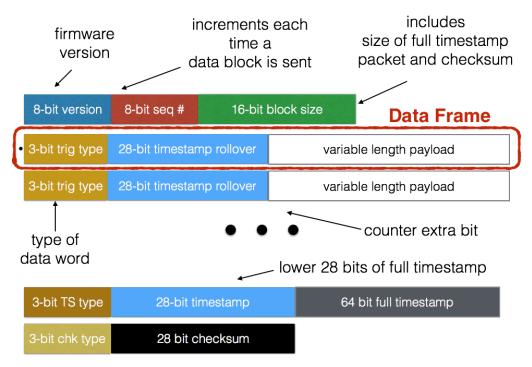
- WIB, COB •
 - Timing interface (optical via SFP) built into PTC / RTM
 - WIB design includes jitter-reducing PLL; not required for RCE
 - System clock jitter expected to be <100ps
- SSP, other systems
 - Timing FMC used as 'bridge' to LVDS interface compatible at hardware level with NOvA – jitter-reducing PLL available if needed
 - Low-cost FPGA carrier + timing FMC used for this purpose
- Protocol decoder
 - Common firmware block provided by timing developers
 - Well-defined interface to readout board firmware agreed with all parties
 - Timing group system allows flexible partitioning

Timing: Testing

- Hardware
 - Timing system interfaces defined, agreed, documented
 - First prototype timing FMCs received in Bristol this week
 - Emphasis is on rapid HW testing in coming weeks, then distribution for test stands
- Firmware
 - Protocol, clock control, physical interfaces already implemented on existing hw
 - IPbus test harness implemented sufficient functionality for integration / test stands
 - 'Upper layer' functions, trigger interface, phase alignment implemented by Feb 17
 - Rolling firmware updates to be applied in test stands as we progress
- QA
 - Correct operation of timing system is critical for operations and good data
 - System is designed for comprehensive and continuous self-test

Software

- CTB
 - Readout with artdaq exists from 35t, largely unchanged
 - Software runs on-board, on full linux OS
 - Allows development on any machine
- Timing
 - Software at an earlier stage of development
 - Experienced Oxford team working on this from Nov 2016
 - Control is via established IPbus protocol, software runs on PC
 - JCOP-IPbus bridge already exists
 - A 'thin layer' on top of this will need to be implemented
 - artdaq readout module needs to be implemented



Data Format

- CTB 35t format shown above no major modifications
- Timing system format will be in same style
- Neither trigger nor timing will be major contributors to data volume
 - Expected to be <1MB/s, easily within capabilities of interfaces and SW

Risks Summary

- Further interface or specification changes
 - Regime of formal documentation for interfaces
 - · Specification is now fixed, controlled changes only
- Availability of expert personnel
 - Schedule is not dependent on any individual at this point
- Delays in hardware supply chain or production
 - Schedule has adequate contingency; if needed, testing can proceed with prototype hardware (already in our hands)
- Failure of electronic integration review (e.g. grounding issue)
 - We have taken a conservative approach
 - Schedule allows re-working of hardware after June 17 if needed
- Physical failure of installed system
 - Provide spares at CERN and on-site expert support throughout running period

Conclusion: Charge

- Does the DAQ meet the science and engineering requirements?
 - Confident that we have an appropriate design for T&T \checkmark
- Does the design provide sufficient flexibility for alternates?
 - Interfaces cannot change now, implementation more flexible \checkmark
 - Sufficient capacity for increase of rate and / or throttling \checkmark
- Are the requirements sufficiently complete and clear? \checkmark
- Are risks captured and is there a plan for managing risks?
 - Risks identified, risk register is being finalised and updated
- *Is production schedule reasonable?*
 - Prototypes of hardware available now \checkmark
 - Final versions available on an attainable schedule \checkmark

Conclusion: Charge

- Does schedule allow sufficient time for testing of other components?
 - Schedule planned around testing regime target is June 2017 ✓
- Is the documentation of the system comprehensive?
 - Largely complete, a few details still to document
- Are all interfaces to other systems understood? ✓
- Is grounding and shielding understood? ✓
- Is the software architecture suitable? Sufficient resources for software?
 - Software for timing under definition, effort is more than adequate \checkmark
- Are the specifications of hardware complete? •
- Are operation conditions understood?
 - The nominal conditions are firm, but we reserve flexibility in T&T \checkmark

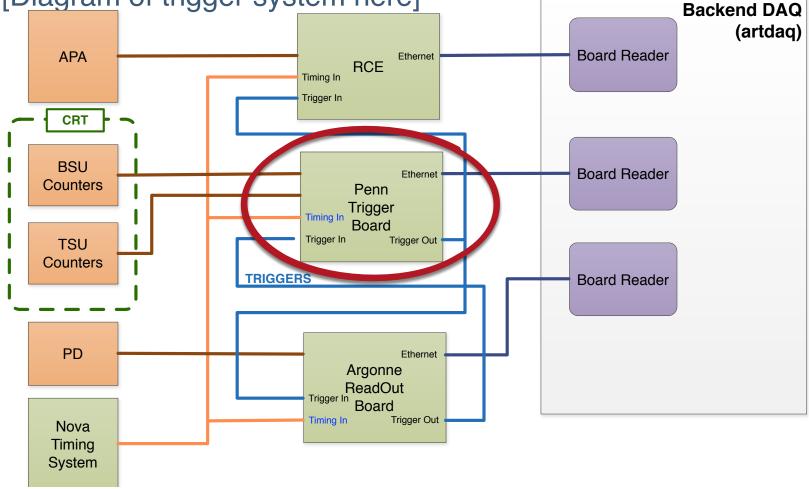
Conclusion: Charge

- Are proposed triggering schemes sufficiently well understood?
 - Detailed logical flow under definition
 - Flexible system can cope with any reasonable request \checkmark
- Is the installation plan sufficiently well developed? Are the DAQ quality control test plans sufficient?
 - Groups have stringent quality control plans in place for deliverables ✓

- System is designed for self-test from the start \checkmark
- Detailed installation planning under way

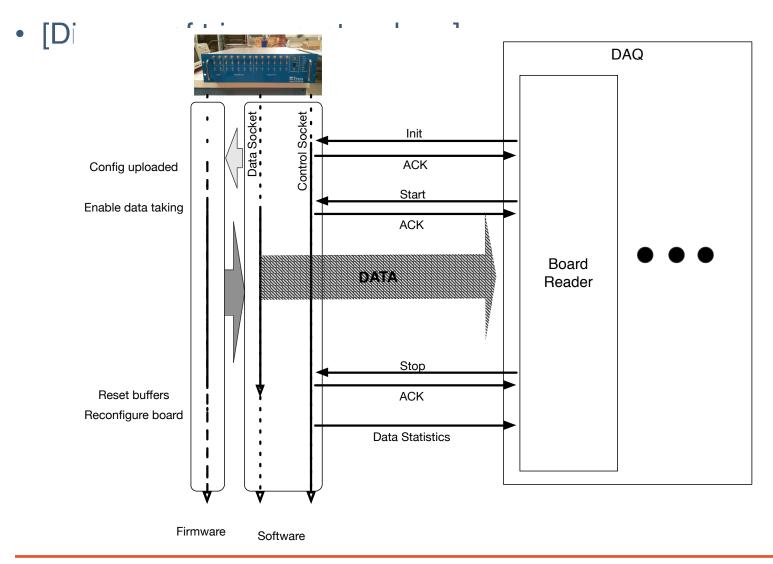
Conclusion: Schedule

- Scope and requirements for trigger and timing are well understood
 - Final technical details of HW, FW, SW interfaces being formally documented and agreed
- Development of systems is well advanced, with experienced teams
- CTB is a modest modification of 35t system
 - New system available in Jun 2017
- Timing is a new development, using well-known technologies
 - Prototypes for test stands Dec 2016; final system Jun 2017
- Trigger and timing need to be robust, flexible, available
 - Schedule therefore has large built-in contingency
 - Support for system testing will be the major task late 2017 onwards
 - Expect to adapt to new requirements, conditions, as they arise
 - FW and SW modifications will be made as needed

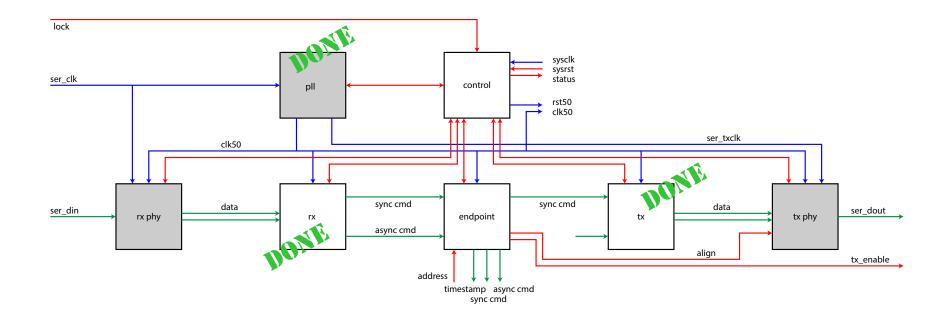


Trigger Overview (35t)

• [Diagram of trigger system here]


Ŵ

CTB Software Flow



Endpoint Firmware

DUNE

Ŵ