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The axion field zeroes out any other CP-violating
phases from the strong or electroweak quark sector.

Axion

X = Agep?

<€ >
VEV f, > 10° GeV

AI The neutron EDM vanishes, solving the strong CP fine-tuning problem.
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Axion mass = harmonic oscillator frequency =

Axion
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VEV f, > 10° GeV

m, = Agcp?/f, <103 eV
Single parameter model for axions

X = Aqcep®
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The initial potential energy density is P
released as ultracold dark matter i

Abbott, Sikivie (1983)
Preskill, Wise, Wilczek (1983)
Dine, Fischler (1983)

VEV f, > 10° GeV

Initial axial theta angle 6,, determines the available potential energy to be
converted into axion dark matter. 4




Latest lattice result for QCD topological
susceptibility agrees with naive estimate

X = d2V/de?

zAQCD4 9 102

10710

Borsanyi, et.al, Nature, 3 November 2016
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This gives the QCD potential energy density available to convert into DM axions.
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Bucket of dark matter is dumped into the
red-shifting photon bath at time 1/H=1/m,_

Global warming
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For a bucket filled to the level <sin? 8,> x y of fish,
dumping it too late creates an improper balance of fish/water.

If you are going to procrastinate and dump it late, you better not have too many fish
in that bucket since there is not a lot of water left!

- Small m, requires small <sin? 0,> to avoid overproducing dark matter.
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Fullness of bucket depends on whether the axion phase
transition happens before or after inflation
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Fig. 10.9: Distribution of |®1] in an inflationary Universe.

If axion phase transition occurs pre-inflation, bubbles are inflated, and we live in
one which by chance can have 8<1.
If axion phase transition occurs post-inflation, many bubbles are contained

within our horizon, and so we get average value <sin*0>X A" of dark matter.
Aaron S. Chou, FNAL PAC 11/10/16 7



New lattice results give crisp dividing line at m_=50 peV
between pre- vs post-inflationary axion phase transition
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ADMX and CMB B-modes are
complementary probes of cosmic inflation

B-modes are observable only if the
scale of inflation E,; > 107® GeV:

If ADMX-G2
observes a lower
mass axion,
E. <1072 GeV,

and B-modes are
not detectable.

o
D>

V14 ~ (r/0.01)1/4 x 1016 GeV.
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A future axion experiment should focus on higher mass to
study the same class of “simple” inflationary models using

Independent probes The natural next step is 10-20 GHz, or 40-80 peV.
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Post-inflation

[ St ]
10 [ misalignment j
| range .
< 1072} r
I What prevents us from
- 1 immediately going to
1073 —1 0'0 . 1 62 ' higher frequencies?
m, (uev)
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DFSZ axion signal photon rate for single volume=A3 cavity
vs. Standard Quantum Limit readout noise

dN/dt [Hz]
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dN/dt [Hz]

ADMX-G2 is currently looking under the lamp post
where the Signal/Noise ratio is favorable

Post-inflationary
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Plausible 10-20 GHz search strategy: higher B field,
more larger cavities, reduce noise using Qubit detector
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Bump hunting: 106 measurements/s -



Ingredients for 10-20 GHz axion DM search

* Higher field magnet
— Utilize FNAL core competency in superconducting magnets

« Larger volume, high-Q, cryogenic RF cavities

— Utilize FNAL core competency in accelerator RF cavities,
cryogenics

 Lower noise RF photon detectors

— Utilize Chicagoland expertise and infrastructure in
superconducting electronics
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Ingredient #1: Higher field, smaller bore magnet
Utilize Fermilab core competency in superconducting magnets

« Signal strength scales as B?

« At higher frequencies, axion Compton wavelength is smaller so the natural
cavity size is also smaller.

— Large B is easier with small bore

* Most risk-free way of increasing signal strength, but expensive.



min. ceiling height < 6.5 m

20 GHz axion experiment possible with existing
commercial NMR YBCO magnet technology

1.1 GHz=25.85T, $12M

v

A

g <1.8m

™m =

kg e

°* 89 mm RT bore
Very similar to 1.2 GHz, except for inner

sections

Fermilab expertise in superconducting magnets and
cryogenics can be used for customizing/procuring
magnet and integrating 20mK cryostat.

(It is non-trivial to maintain a sufficiently large sample

space for cold cavities.)



Ingredient #2: Larger volume, high-Q RF cavities
Utilize Fermilab core competency in accelerator RF cavities

Simplest idea: power combine lots of
cavities, operated in parallel and tuned to
the same frequency.

Cost and complexity scale at
least linearly with N, i.e. as
(frequency)3 !

Okay for small N_,,, but not
indefinitely scalable.
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The axion DM community has engaged the accelerator
RF community to transfer accelerator cavity technology

Same physical process as acceleration, but time reverse!

Accelerators transfer power from RF cavity - charged particle beam;
Axion detectors transfer power from charged particle beam - RF cavity.
Both require electric gradient to be in-phase with the particle beam.

Fermilab Linac

Orpheus axion resonator
concept (Rybka, UW)
uses periodic dielectric to
suppress out-of-phase RF

Alvarez drift tube linac (1945)
uses periodic conducting shields
to block out-of-phase RF

E-field map
) . ;\n«,\n‘(‘ MNManay ENTAT DAY

Funding for cross-disciplinary collaboration from Heising-Simons Foundation.



Some other large volume axion cavity concepts inspired
by particle accelerator RF cavity designs

oy

Photonic bandgap cavities (Carosi, LLNL)

£ F1ene (v/m)

4 GHz

== Folded traveling wave
Ridged waveguide tube (Kazakov, FNAL TD)

(Moretl'i FNAL AD) Aaron S. Chou, FNAL PAC 11/10/16 19




Ingredient #3: Lower noise photon detectors

— Utilize Chicagoland expertise and infrastructure in superconducting
electronics

» U.Chicago: new Pritzker nanofab facility, quantum computing

« FNAL: milliKelvin test stands, MKIDs, SPT, SRF materials expertise
* ANL: superconducting fab user facility, SPT

» Northwestern U: superconducting materials expertise

4

Brand-new Pritzker Nanofab Superconducting qubits at
D.Schuster lab (UC)
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Quantum-limited amplifiers suffer from zero-point readout
noise — the Standard Quantum Limit (SQL)

P
<AD .
\ % h= quantum of phase space
<aﬂﬂq> --------------------- A )< area.
=|asm6 a 14 Simultaneous measurement

of wave amplitude and phase
| gives irreducible zero-point
5 noise in measurement.
! (Caves, 1982)

-
>

(afXJoy X
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Thermal noise = KT of energy per resolved mode
- Quantum noise =1 photon per resolved mode in the T=0 limit.

Noise photon rate exceeds signal rate in high frequency dark matter axion

searches. Need new sensor technology....
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Quantum non-demolition (QND)
single photon detection can do much better

Number operator commutes with the Hamiltonian—> all backreaction is put into the phase.
Measure exact photon number. Noise = shot noise, thermal backgrounds, read noise.

P

aPloy oo

=|at|sind

Phase space area is still
¥%h but is squeezed in
radial (amplitude)
direction. Phase of
wave is randomized.

Demonstrated with Rydberg
atoms, (Haroche/Wineland
Nobel Prize 2012)

Implementation using solid state
artificial atom qubits,
(D.Schuster et.al, 2007)

Proposed for axion search:

(Lamoreaux, et.al, 2013,
Zheng, et.al, 2016)

22
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Use solid-state superconducting qubits as
“artificial atom” photon detectors

Qubit-based single microwave photon detection technology pioneered by D.Schuster (UC)
via DOD-funded quantum computing research

* An end-coupled “transmon” qubit with ~40 legs

fast flux qontrol

bl
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QND Detector = qubit + fast cavity
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Sensing photon number with a qubit

h
H ~ hw,a'a + §(w; +2ya'a)o,
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* Qubit transition
frequency depends on
photon number in cavity

«Just like matter-effects
in neutrino oscillations
sense potential energy
of interaction with
background particles

Theory: J. Gambetta, A. Blais, ..., S. Girvin, and R. J. Schoelkopf, PRA 94 123602 (2005)
Experiment: D. |. Schuster, ... , S. M. Girvin, R. J. Schoelkopf, Nature (London) 445 515 (2007)
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3-D transmon qubit for axion detector being fabricated
at Pritzker nano-fab facility

Akash Dixit (UC)

Scanning electron microscopy after Al deposition

A
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Prototype for 10 GHz axion QND detector

Superconducting qubit in field-free
bucking coil region acts as an
amplitude—>frequency transducer for
QND measurements.

Qubit frequency shifts by 10 MHz per
photon deposited in axion cavity.
Successful “spin-flip” of qubit
confirms presence of cavity photon.

Waveguide

Axion scattering
cavity dipped into
high B-field region

Akash Dixit, Aaron Chou, David Schuster (UC),

R&D in progress. Aaron S. Chou, FNAL PAC 11/10/16 27
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Projected qubit sensor noise levels
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Enabling technology

transfer from Quantum Sensors at the Intersections
quantum computing of Fundamental Science, Quantum
to HEP Information Science & Computing

Co-Chairs: Swapan Chattopadhyay, Roger Falcone, and Ronald Walsworth

Report of the DOE Roundtable held February 25, 2016

Panel recommends new program
to support collaboration between
DOE-supported labs & non-DOE
quantum scientists.

Led by OHEP Connections
initiative

Also:
HeISIng-SlmonS FOundathn, TN (6 N TS G Participants and Contributors:

7 David DeMille, Peter Graham, Evelyn Hu, Misha Lukin,
Detector R&D funding, D ENERGY oo peer e, ety i, uite L
LDRD funding oo o oo R ™

Aaro Office of Science Siddiqui, Kartik Srinivasan, Chris Stubbs, Jun Ye




A two-way street for technology transfer

« U.Chicago and other DOD-funded qubit researchers transfer high
QE, low dark rate single photon detectors to HEP

— This is possibly the enabling technology for future axion
searches, neutrino mass measurements, etc.

computing community to improve qubit lifetimes

— Could this be the enabling technology for quantum
computing?
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Private foundation funding follows the guidance of VIPs

“If the axion does not
exist, please tell me
how to solve the
strong CP problem.”

HEISING-SIMONS Frank Wilczek
FOUNDATION

“Axions may be
intrinsic to the
structure of string
theory.”

Ed Witten

Through current axion initiative, providing funding R&D for ADMX-G2, ADMX-HF, CASPEr.

(Including support for Chou’s student Akash Dixit for qubit R&D, LLNL cavity workshops)
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Take-aways

« Operating ADMX-G2 at lower frequencies will probe a unique and
interesting range of axion masses and provide valuable experience for

future projects.
— Science topics: neutron EDM, dark matter, scale of cosmic inflation

* Next generation axion DM experiments should target the 10-20 GHz band
and R&D in the next 3-5 years will be critical to determining the best
techniques for improving the signal/noise ratio to enable the experiment.

* Fermilab core competencies are well-suited to address the technical
challenges:
— High field superconducting magnets
— High-Q, large volume RF cavities, cryostats,
— Chicagoland expertise/infrastructure in superconducting electronics

« The enabling technology may be the qubit-based single microwave
photon detector (FNAL/LLNL/U.Chicago R&D collaboration)
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Backup slides
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Axions + cosmic inflation = CMB isocurvature
60%=H%/f,> (Seckel & Turner, 1985)
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Inflation creates a spectrum of radiation in the form of gravitational waves and
axionic waves (isocurvature perturbations in CMB). Neither has yet been detected.




Fermilab’s MuCool test stand is secretly an axion experiment
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Copper RF cavity operated inside a superconducting 5T solenoid.
This looks just like a 800 MHz axion experiment.
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Cavity QED:
Use 2-level atom to measure cavity photon population

Linear cavity , 2-level “atom”
Bosonic oscillator, Fermionic oscillator,
Number operator= Q' Q Number operator = O 4

The 1%t order non-linearity in (number operator)? in the undiagonalized Hamiltonian is:

f 292 ;| ¢
H~ hwr( a—|—1/2) 2<wa+%aTa+gA>0z A=w -w

i j
I

The atom frequency depends on the cavity resonator’s occupation number!
This product of number operators commutes with H and allows QND measurement.

36
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(D.

Wineland's PhD

Serge Haroche 2012 Nobel Prize: 1
Atoms acts an amplitude=> frequency transducers. &
They probe the cavity photon number without any €
net absorption of photons.

Analogous to neutrino “matter effects.”

advisor) ~ - — [ —
Circular n
state —
preparation

f, ?
Rydberg High Q (g
atoms Cavify

An atomic clock delayed by photons trapped inside
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Birth, life and death of a photon
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Hundreds of atoms
see the same

04 photon
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S.Gleyzes et al, Nature, 446, 297 (2007) time (s)




Other on-going axion DM R&D efforts

« ADMX-HF (NSF, Heising-Simons)
— Goal: demonstrate operability of
quantum-limited Josephson

parametric amplifier near large
magnetic field. Not quite there yet.

— Strategy: purchase larger magnet to
enable axion search at ~6 GHz
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N 10°
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o 10
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Other on-going axion DM R&D efforts

« CULTASK (Center for Axions and Precision Physics, IBS South Korea)
— Goal: explore all possibilities for exploring 2-10 GHz mass range

— Status: Purchased 2 dilution refrigerators, small magnet to obtain

operational experience
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