# Intersections of Beam Halo and Cosmic Muons in ProtoDUNE

Matthew Worcester (BNL)

ProtoDUNE Calibration Meeting November 3, 2016

### Outline

- Space charge effect
- Cosmic ray tagger
- MC muon samples
  - Beam halo distribution
  - Cosmic muons
- Tagged muon intersections
  - Single t<sub>0</sub> tag
  - Double t<sub>0</sub> tag
- Summary

# Space Charge Effect (SCE)



Impact on recombination: ~10%

Impact on spatial distortion: ~5cm (drift), ~20cm (transverse)

### SCE Calibration with Muons



- ♦ Two samples of t<sub>o</sub>-tagged tracks can provide SCE corrections:
  - <u>Single tracks</u> enable corrections at TPC faces by utilizing endpoints of tracks (correction vector approximately orthonormal to TPC face)
  - <u>Pairs of tracks</u> enables corrections in TPC bulk by utilizing unambiguous point-to-point correction looking at track crossing points

## **Crossing Pair Tracks**



Mike Mooney

- ◆ As Igor pointed out at protoDUNE Science Workshop, a single laser track is not enough to obtain the SCE correction vector
- Principle applies to calibration with muon tracks as well!

# Cosmic Ray Tagger (CRT)





Active CRT module volume =  $3.225 \text{m} \times 1.625 \text{m}$  in two layers of plastic scintillator This study: cover the active TPC volume with two rows of 5 modules with no overlap:

front 
$$(Z = -202cm)$$
 and back  $(Z = 944cm)$ :

top 
$$(Y = 861cm)$$
:

## MC Muon Samples

- Beam halo muons
  - Untagged generated distribution from beam spill
- Cosmic muons
  - Generated with CORSIKA in LArSoft
- From cosmic muons select t<sub>0</sub>-tagged track samples
  - Single tagged tracks at one TPC face
    - X = +380 cm and X = -380 cm anodes
    - Each CRT panel (Z = -202 cm, Z = 944 cm, and Y = 861 cm)
  - Double tagged tracks
    - Anode to anode crossing cosmics
    - All combinations of CRT panel cosmic tags
- Find intersection points in TPC between tagged cosmic samples and beam halo distribution

### **Beam Halo Distribution**



### **CRT Cosmic Hits**

Front CRT muon hits (Z = -202cm) /spill 1855 muons





Top CRT muon hits (Y = 861cm) /spill 4831 muons

#### Normalize cosmic muon sample to spills:

- 1,401,886 simulated muons in 9.5k triggers
- Use both on- and off-spill cosmics
- $N_{trig}$  = 2 × 4.8 sec/spill × 25 Hz = 240 trig/spill
- 4 ms per readout window/6.45 ms simulated

$$N_{\mu/spill} = 240 \underbrace{trig}_{spill} \times \underbrace{4 \; ms}_{6.45ms} \times \underbrace{1}_{1.40M \; \mu} \times 147 \underbrace{muon}_{trig}$$

Assume 100% CRT tagging efficiency



### Cathode and Anode Cosmic Hits



Matthew Worcester (BNL)

10

11/3/16

### Cosmic Muon Cuts

- Using initial muon momentum to extrapolate track: require  $E_u > 4 \text{ GeV}$
- Using beam halos assumed to be in  $\hat{Z}$  for crossing tracks: require  $\theta_z > \pi/6$





# **CRT Single Tag Crossings**

For single  $t_0$ -tagged crossing points we are mostly interested in occupancy near the TPC face. Each bin is the number of intersections between single CRT  $t_0$ -tagged cosmics with beam halo muons.



### -X or +X Anode Crossings

Each bin is the number of intersections between single -X or +X anode  $t_0$ -tagged cosmics with beam halos.



## **Anode-Anode Double Tags**

Double-tagged crossing points (one  $t_0$  tag at each TPC face) improve SCE corrections in the TPC volume.

Each bin is the number of intersections between anode to anode cosmics, which have one  $t_0$  tag in each anode face, with the beam halo muons.

Normalized to one spill.



200

100

100

200

300

400

500

600

Z (cm)

# **CRT Double Tags**

Each bin is the number of intersections between CRT double-tagged cosmics, which have one  $t_0$  tag in each panel, with the beam halo muons. Normalized to one spill.



# All Double Tags



## Summary

- Updates since August
  - Correct beam halo distribution has been included
  - Increased cosmic muon statistics by 10x
- Have single t<sub>0</sub>-tagged muons near 5/6 TPC faces if we include top CRT
- Double t<sub>0</sub>-tagged cosmic muon intersections with the beam halo can cover almost all of ProtoDUNE TPC bulk
  - Can fill in the final gap with single-tagged muons
- Still to be considered
  - Anode-CRT double tag combinations intersection points with beam halo
  - Anode-anode double tags intersection with CRT double tags (no beam halo required)