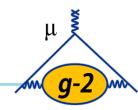


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Analysis development for the precision magnetic field measurement

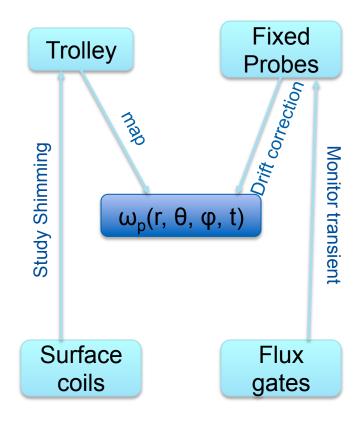
Ran Hong g-2 computing review Nov. 8, 2016

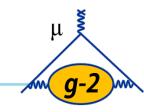

Outline

μ **š g-2**

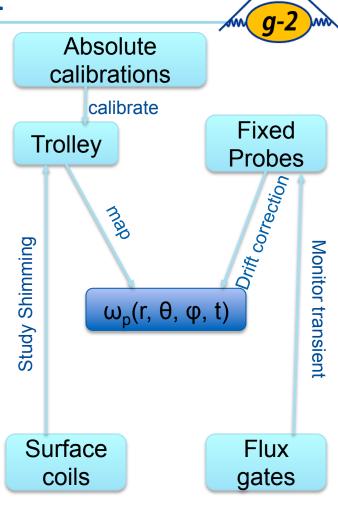
- Our Goal
- Overview of B-field analysis project
- Our team
- Kick-off plan
- Current status
- Plans and schedule for the near future
- Summary

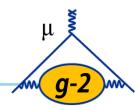
Our Goal


- Physics Goal
 - Provide $\omega_p(r, \theta, \phi, t)$ with absolutely solid uncertainty estimates $\Delta \omega_p(r, \theta, \phi, t) \leq 70$ ppb (weighted by muon distribution)
 - Provide the vector B field in the muon storage region

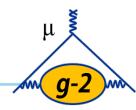

Source of uncertainty	R99	R00	R01	E989
	[ppb]	[ppb]	[ppb]	[ppb]
Absolute calibration of standard probe	50	50	50	35
Calibration of trolley probes	200	150	90	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	_	_	-
Time dependent external B fields	_	_	_	5
Others	150	100	100	30
Total systematic error on ω_p	400	240	170	70
Muon-averaged field [Hz]: $\dot{\omega}_p/2\pi$	61791256	61791595	61791400	—

Hardware systems


- Trolley
 - Mapping ω_p in the muon storage area
 - Multipole expansion of the ω_p map
 - Slices vs azimuth
 - Average over azimuth
- Fixed probes
 - Monitoring ω_{p} in the outer region all the time
 - Correct drift of ω_p over time
 - Reminder of a trolley run
- Flux gates
 - Monitoring and correcting for the background field and transient field
- Surface coils the Active Shimming
 - Monitoring the surface coil current
 - Understand how it shapes the field


🚰 Fermilab

- Absolute calibration
 - Correct the perturbations by materials
 - Correct for systematics like probe shape, chemical effects, imaging effects, etc.
 - Plunging probe: calibrate the trolley probes, in the g-2 ring
 - Water probe/ ³He probe: calibrate the plunging probe, in the test magnet at ANL

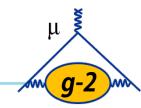

μ

Another "dimension" of the project (software systems)

- Online Analysis
 - Plot the fresh on screen
 - Automatic data quality monitoring, send alarms and reminders
- Offline Analysis
 - High accuracy/precision algorithms for extracting ω_p
 - Semi-offline: routinely executed analysis after each run (1 run scope)
 - Correlation study and first-order corrections
 - Construct data product useful for down-stream analysis
 - Commissioning Analyses: determine tunable parameters
 - Physical Analyses: reach the physics goal, full systematic study

Another "dimension" of the project (software systems)

- Data base
 - Record settings, health of each run, warnings, errors and alarms
 - Record key analysis results from online analysis
- Documentation: for normal operations and developments
- Software management
 - Repositories
 - System and network configurations
 - Development environment setup


Tools for software systems

- Midas (DAQ)
- Art (Analysis)
- Html, css and java script (Display)
- MySQL or PostgreSQL (Data base)
- Doxygen (Documentation)
- Github and wiki page (Software management and documentation)
- Basecamp (Project management)

μ

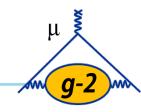
Our team* Senior researcher/Faculty, Postdoc, Grad Student

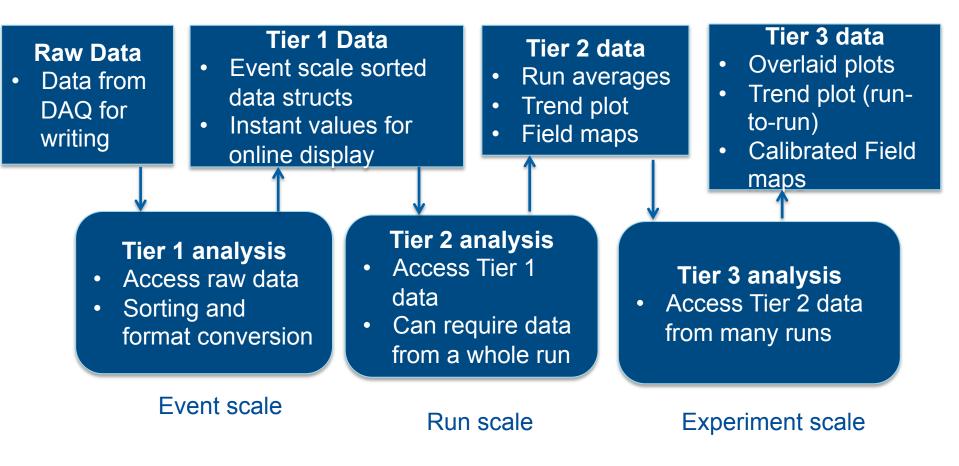
- Argonne National Lab: Trolley, Absolute calibrations (Platform)
 - Peter Winter, Joe Grange, Ran Hong and undergraduates
- University of Washington: Fixed probes
 - Alejandro Garcia, Erik Swanson, Martin Fertl ,Matthias Smith, Rachel Osofsky
- University of Michigan: Flux gates, Absolute calibrations (³He)
 - Timothy Chupp, Alec Tewsley-Booth, Midhat Farooq
- University of Massachusetts: Absolute calibrations (water)
 - David Kawall, David Flay, Alyssa Conway
- Fermi Lab: Surface coils
 - Brendan Kiburg and undergraduates

*These people are also busy with hardware, DAQ, shimming, radial field measurement, vacuum chamber alignment, etc. Only a fraction of their time can be spent on analysis for the moment.

The kick-off plan

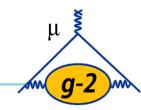
First Analysis Workshop, Argonne, June 29th – 30th 2016


- Status update from each hardware group
- Moderated discussions about: Requirements, tools, control logics, analysis framework, software management, etc
- Distill and make decisions

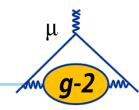


a-2

The kick-off plan

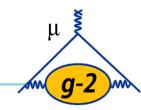


Generic Analysis Chain


The kick-off plan

- Decisions after the first Analysis Workshop
 - Appoint leaders for each hardware system and each software system
 - For each software system
 - Develop DAQ (may take >80% of their work)
 - Define raw and tier-1 data products
 - Define plots or numbers for online display
 - Define analysis tasks for online, offline and semi-offline
 - For software managers
 - Initialize github repositories for daq and analysis
 - Make decisions of which analysis tool to use
 - Discover midas anlyzer, rootana, rome, art
 - Study the gm2 offline computing software
 - Find the right way to configure virtual machine and development environment

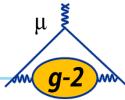
Current status

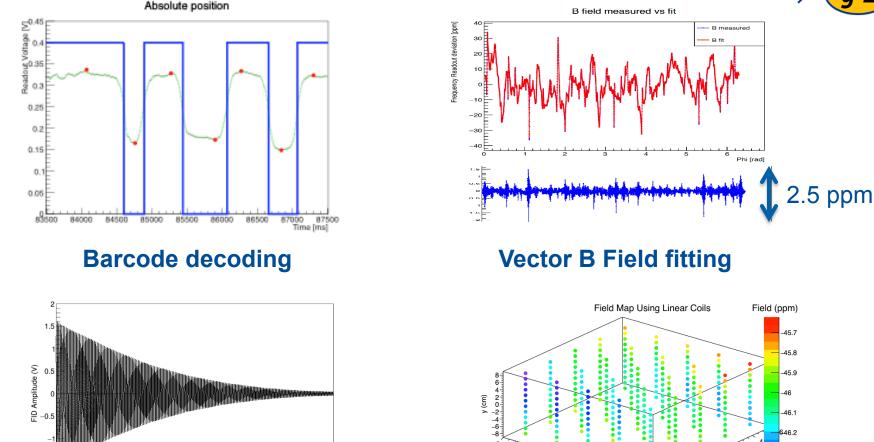


Hands-on coding workshop, Argonne, Sep 13th-14th 2016

- Goal: make people familiar with setting up VM, using Midas and art
- Tasks
 - Training: VM setup and develop environment setup
 - Introduction to the git repository layout
 - Training: Midas set up, configuration and front-end development
 - Training: cvmfs, UPS and gm2 offline computing tools
 - Training: Art module development (with examples based on gm2 v6)
- Milestone: instruction materials become documentation for the tasks above

Current status




- More recent decisions
 - Move to gm2 v7 (Basic example of gm2 v7 was tested)
 - Use Midastoart for both online and offline (Thanks to Thomas for his development)
 - Use node and plotty (html, css , java script) for display (Thanks to Aaron for his development)
 - Use cvmfs and ups to setup utilities, like boost and root (Done!)
 - Reorganizing the online and offline systems
 - Online display and data quality monitor
 - Analysis modules
- Independent analysis developments: people's personal code
 - NMR signal fitting and frequency extraction
 - B field multipole expansion
 - Vector B field fitting
 - Trolley barcode analysis

Wrap into Art modules
or programs with nicer interfaces

Current status

NMR frequency extraction and mapping the Test magnet

2

0 × (cm)

-46.3

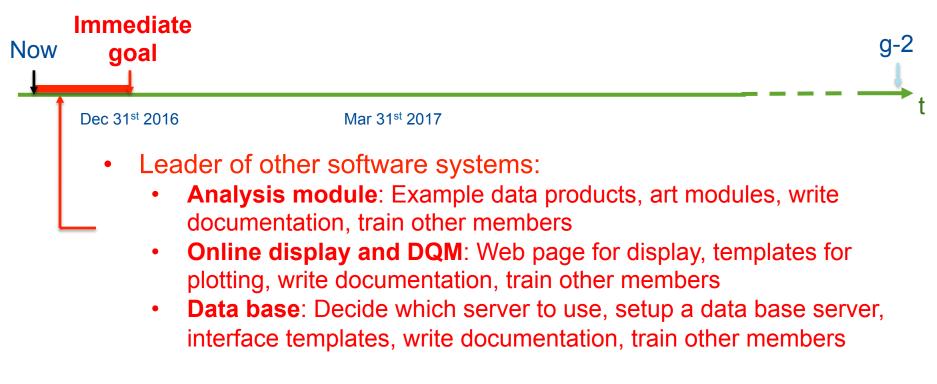
-46.4

2 (cm)

-2

-6 -6

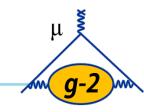
-1.5


-2[

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (s)

Future plans and schedule

• Immediate goal: Finish the "infrastructure construction" for the analysis software development



μ

a-

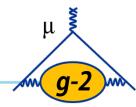
Future plans and schedule

Workforce chart

Hardware systems systems systems	Fixed probe (Matthias S)	Trolley (Ran H)	Flux gate (Alec T)	Surface coil (Brendan K)	Absolute calibration (David F)
Online display and DQM (Need Expert)	Matthias S	Ran H Peter W	Alec T	Midhat F	Ran H
Analysis module (Ran H)	Rachel O	Ran H Joe G	Alec T	Rachel O	David F
Data base (Need Expert)	Rachel O	Ran H	Midhat F	Rachel O	Midhat F
Documentation (David F)	Matthias S	Ran H Peter W	Midhat F	Midhat F	David F
Software management (Matthias S Ran H)	Matthias S	Ran H	Alec T	Rachel O	David F
					🗕 🛟 Fermila

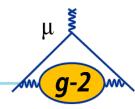
17

18


Future plans and schedule

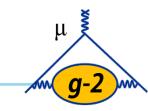
- Immediate goal: Finish the "infrastructure construction" for the analysis software development
- Follow-up goal: Each hardware team finish analysis development following the examples already set up

- Each team start their own development following the example
- Estimate that each system needs 1 week of development (DQM, analysis module, data base), expect to finish January 2017.
- Milestone: Basic version of ω_p map extraction (Jan 2017)


Future plans and schedule

- Immediate goal: Finish the "infrastructure construction" for the analysis software development
- Follow-up goal: Each hardware team finish analysis development following the examples already set up
- Near future goal: Have the whole analysis software ready to extract the ω_p map when the B field is back on in 2017

- Testing and optimizing
- Mock data challenge using "simulated front-ends" (milestone)
- Develop more modules for correlations study and corrections
- Milestone: Official version of $\omega_{\rm p}$ map extraction
 - All software development done
 - Well planned routine analysis tasks
 - Well documented



- Towards the Physics Goal (Far future, >May 2017)
 - Most of the "products" from those tier-1 and tier-2 analyses are Root trees, histograms and graphs. Down stream analyses can be done without Art.
 - Restructure the organization, more "Physics Goal Oriented"
 - Vector B field study
 - Systematics study
 - Convolution with muon distribution
 - Two or more people doing the same task, for cross checking

μ

Summary

- The precision B field analysis project is aiming at giving ω_p(r, θ, φ, t) and Δω_p(r, θ, φ, t)
- The project is initialized well and ramping up to speed. Tools are decided and people are starting to write code for data products and analysis modules
- Leaders of many important tasks are appointed, but we need experts on webpage (for plot/data display) development and data base development.

