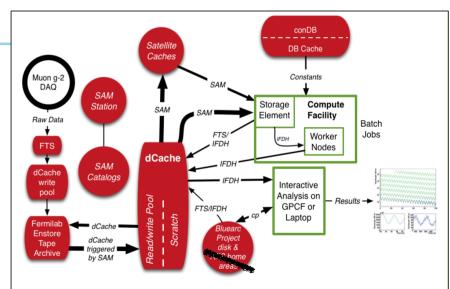
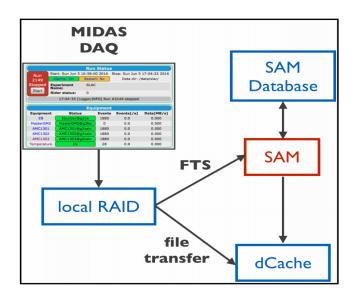

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Job Submission and Workflow

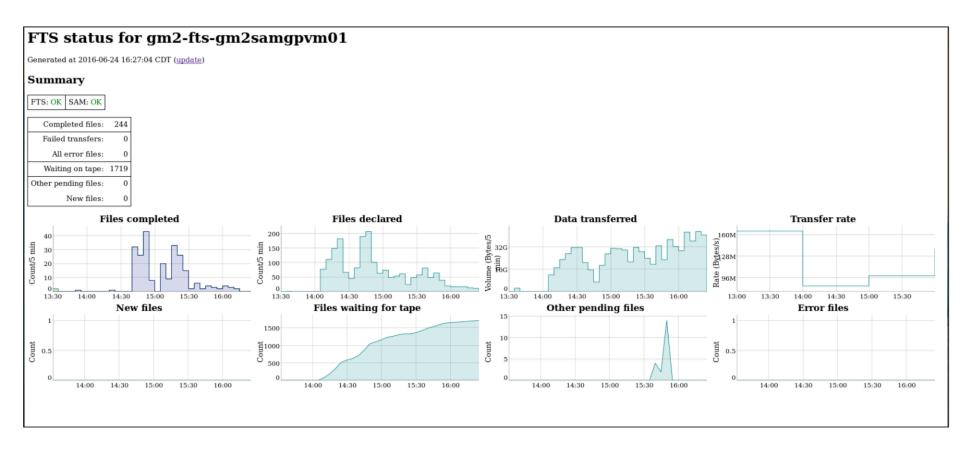
Tammy Walton
Computing Readiness Review
Nov 7-8, 2016

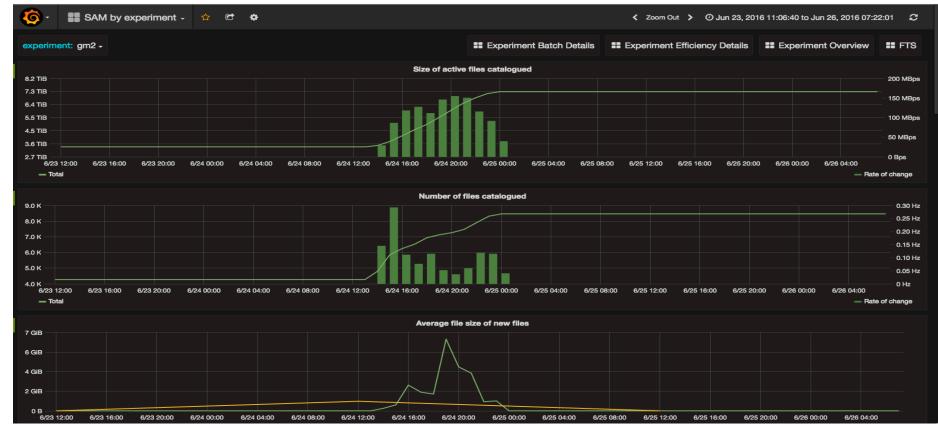

Overview


- Adam stressed that we will NOT reinvent the wheel.
- We are using Fermilab resources and services for job submission.
- This talk covers:
 - resources/services in operations
 - quantify how much experience we have using the services
 - directions and plans to incorporate additional resources

Status

- SLAC test-beam used the FTS for storing data.
- FTS system copies the MIDAS raw files to the Fermilab dCache and are written to tape and cataloged in SAM.
- We need more practice using the services. In the very near future, we will gain more experience using both the calorimeter and tracking QA test-bench data.




Status: Using File Transfer Services and SAM

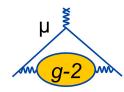
Success of using and setting up the server (SLAC test-beam data)

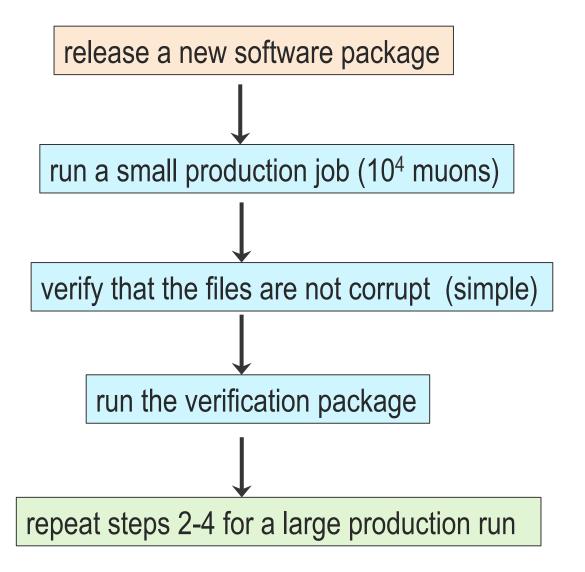
Status: Using File Transfer Services and SAM

Success of accessing the data from SAM and processing the data using Jobsub (SLAC test-beam data)

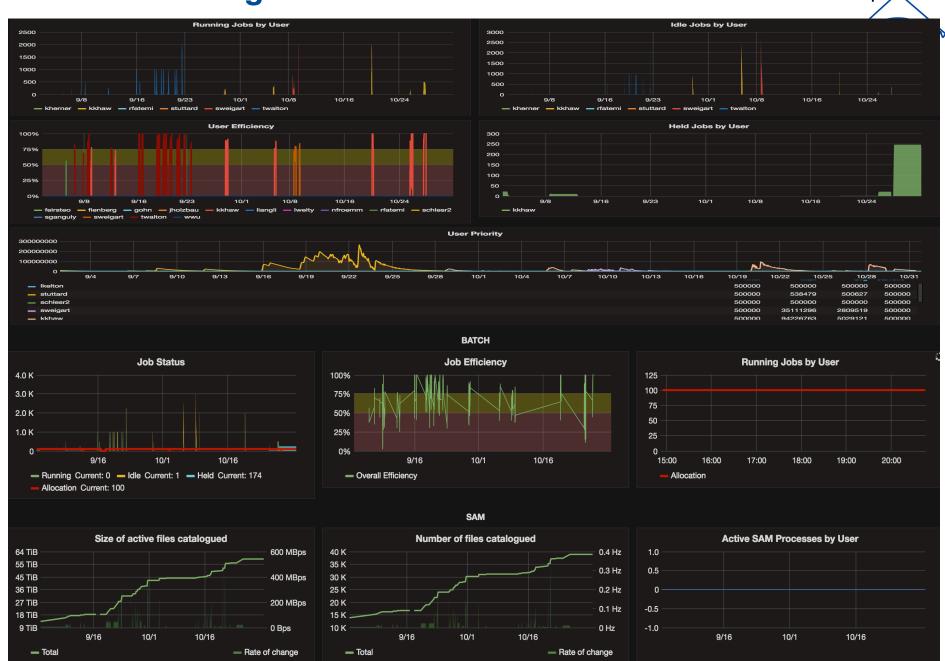
Status: Simulation (More on using Jobsub)

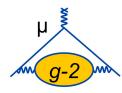
- We have the most experience using jobsub to process the simulated data.
 - Mock Data Challenge
 - Used the data for understanding the simulation and geometry (see Renee's and Leah's talks).
 - Produced around 50 million muon events (spanned 4 software releases)
 - Things to come with the mock data challenge production
 - Goal is 10% of the real data (101 muons) using a gun that tracks the muons around the ring.
 - Study calorimeter and tracking calibration, digitalization, and reconstruction
 - Develop the physics analysis tools
 - Validate the framework structure
 - Practice data handling, management, and storage
 - More realistic (physics) studies of the muons (eg, spin tracking, muon losses, etc)




Status: Simulation (More on using Jobsub)

- The scripts are simple and standard for running jobs on the Fermilab grid.
 - Approved by OPOS
- We haven't had the need to use offsite resources.
 - Take advantage of Mu2e expertise.
- We are using bash shell scripts.
 - In the very near future, the scripts will go through a python upgrade phase.
- Running jobs on the Fermilab grid.
 - Use ifdh to copy the simulated and log files to the user /pnfs/GM2/scratch area.
 - We are not using a production user.
 - Not copying files to tape or adding datasets to SAM.


Status: Current Workflow for Processing



Status: Running Jobs On the Grid

Status: Checking the Quality of the Files

- A simple python script (**findMissingFiles.py**) which searches for missing files and checks if the file completed successfully.
- Below is the report from the QA script.

```
Missing files= 0/93

Number of files that abruptly stopped = 0

Good files= 93/93

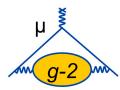
Time Summary (minutes) -- Average File CPU= 177.3736 and Real= 163.4864

Average Events per File= 5000

Average Size per File (MBytes)= 235.05
```

Status: Using art SAM services in the Production Chain

- We have not taken full advantage of the art-SAM services.
 - Do not have an official production team.
- We have started the initial steps.
 - Incorporate the FileCatalogMetadata service in the production fhicl file.
 - Plugin to write experimental metadata.
 - We have had many discussions regarding the experimental metadata.
 - At the moment, *fhicl file name* is the only additional data that we need to store.
 - However, we have not decided whether to store the name or the contents of the file.

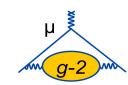

```
services: {
 FileCatalogMetadata : {
      applicationFamily : "gm2ringsim offline"
     applicationVersion: "v7 03 00"
     fileType
```

```
module type : RootOutput
             : "qm2ringsim muon qas qun.root"
fileName
dataTier
             : "truth"
// use plugin to defined generic metadata paramaters that are not part of sam services
FCMDPlugins : [ { plugin type : Metadata
                   fhicl_name : "gm2ringsim mdc0.fcl"
```


11

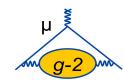
Status: Documentation

production summary wiki


Using redmine for documentation.

Current layout is not ideal.

Goal of the production team is to reorganize the web page.


Plans

- Include the calorimeter, tracking, and auxiliary detectors into the production.
 - Design a layout for running various detector packages.
 - Our digitalization, calibration, and reconstruction have a straight-forward work flow.
- Learned from NOvA and MicroBooNE
 - Examples of using FTS system
 - Convert production bash shell scripts to python scripts
- Incorporate SAM services into the simulation production flow.
 - Use NOvA model as a template for deciding which information should go into the metadata.
 - Determine the experimental metadata that are needed.
 - Note, Adam has used the full SAM services and we are users of SAM4Users.
- Investigate using POMS (Production Operation Management Service) for submitting, managing, and tracking the production.

Summary

- Due to the status of the simulation, we have NOT need to run large and continuous production jobs.
- Therefore, we have not yet form an official g-2 production team.
 - Now, it's time to bring the production efforts up to par and ensure we are ready for data taking.
 - Will ask for help from the g-2 collaboration at our December Collaboration Meeting.
 - Since, we are using Fermilab resources and services, the data management will be ready long before data taking.

14