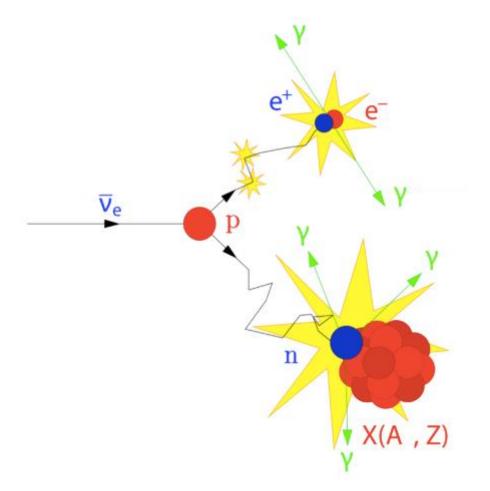
Reactor Anti-neutrinos

Jon Coleman

University of Liverpool

Applied Antineutrino Physics 2016

1st - 2nd December

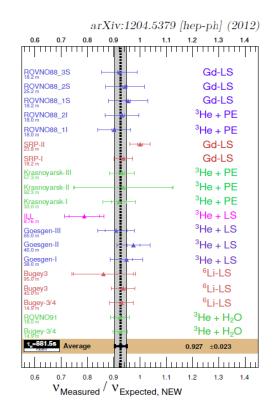


- Most results presented are from last weeks workshop in Liverpool
- "Precise predictions of the antineutrino spectra emitted by nuclear reactors is a key ingredient in measurements of reactor neutrino oscillations as well as of the recent applications to the surveillance of power plants in the context of non proliferation"

See http://hep.ph.liv.ac.uk/aap2016/

- Reactor Anti-neutrino Anomaly (RAA)
- The Reactor Shoulder at 5 MeV
- Sterile neutrinos from Reactors
- Experiments
- Applications

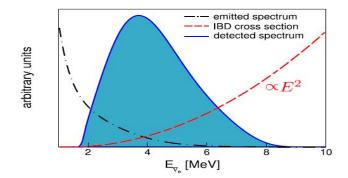
Anti-neutrino Interactions

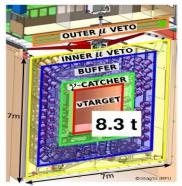

Inverse β -decay: $v_e + p \rightarrow n + e^+$

Distinct signal: **Prompt** e⁺ track **Delayed** *n* capture releases γ-rays

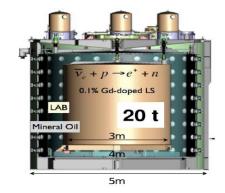
Efforts to use n_e scattering are also being addressed

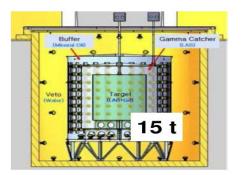
Reactor Antineutrino Anomaly


- Rate recalculation leads to discrepancy between the detected and predicted number of antineutrinos coming from reactors
- Reactor Antineutrino Anomaly:
 - 6% flux deficit between
 - SBL reactor experiments
 - and new predictions (2011)
- Sugests a fourth, sterile-type neutrino may exist?
- Or perhaps nuclear effects?


θ_{13} high Precision reactor Experiments

current high precision reactor experiments:

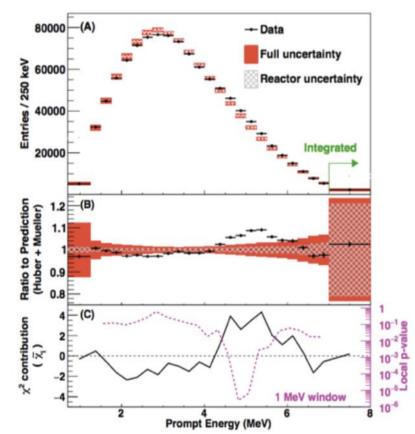

- inverse beta decay reaction
- organic liquid scintillator
- loaded with 1g/L Gd
- measurement of θ_{13} using $\bar{\nu}_e$ rate and spectral shape



Daya Bay

RENO

The Reactor Shoulder


- All three Reactor Experiments, Daya-Bay, Double-Chooz and RENO are far enough away that sterile neutrino oscillations are averaged out
 - Hence no confusion between New Physics and Nuclear effects
- Statistics are approaching millions of events

Daya Bay

Measurements of neutron capture time, vertex distributions, delayed energy spectrum of events around 5 MeV region are consistent with the rest of IBD events

Theoretical predictions do not account for the excess of the 4-6 MeV excess in the prompt energy spectrum with a local significance of 4.4 sigma

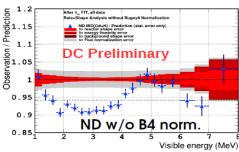
Huber/Mueller prediction can not described the entire prompt energy spectrum at 2.9 sigma

Double Chooz

Shape-only:

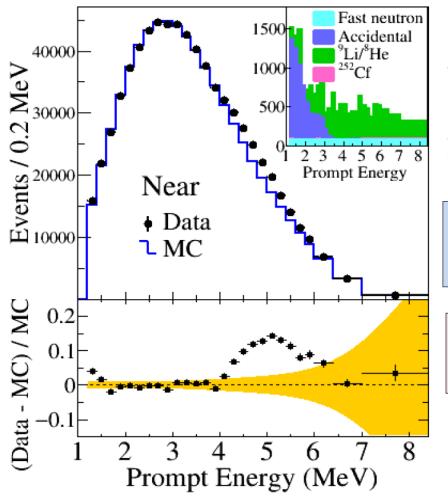
- → Data and MC spectra normalized to 1
- By definition, in absolute over the energy range:
 - \rightarrow Integral(DATA) = Integral(MC)
 - → Integral(Excess) = Integral(Deficit) !
 - \rightarrow values of the ratio depend of the statistics in the bin

But:


- \rightarrow What happens if I use a normalization?
- → What is the real problem? Deficit? Excess? Both?
- → "Excess"and " Deficit"notions are driven by normalization
- → In shape-only analysis, only distortions remain !

Conclusion:

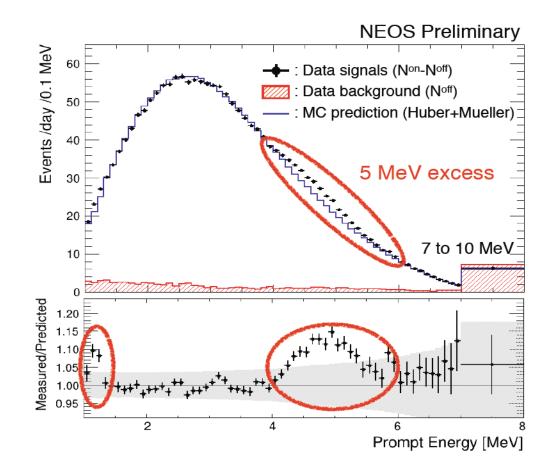
 \rightarrow In Shape only, some characterizations of the distortions can be done: scaling with reactor power, fission fraction dependence, ...


 \rightarrow But normalization + shape is a must for physics interpretation, and the uncertainties associated to the normalization has to be taken into account.

RENO

1400 days of data (Aug. 2011 - Sep 2015)

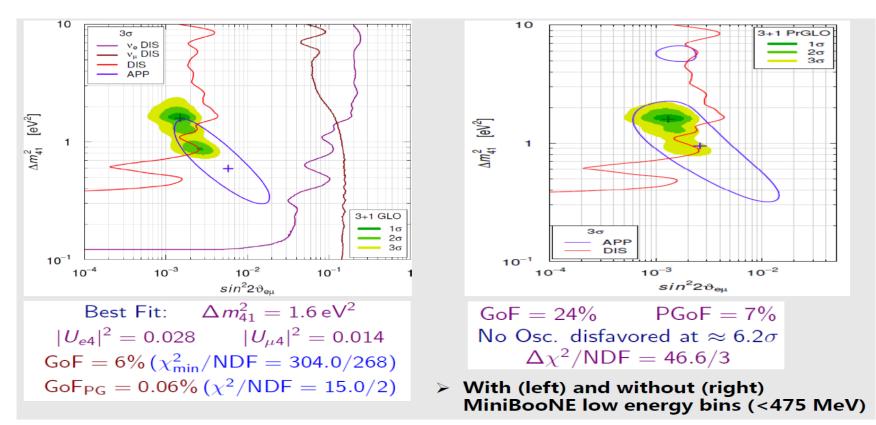
(Preliminary)


The measured near spectrum is compared with prediction using χ^2 -square test.

Fraction of 5 MeV excess: 2.50 ± 0.21 (%)

Significance of the 5 MeV excess: $\sim 12.7 \sigma$

NEOS


- Measured spectrum
 - Reactor-on period:
 - signal + background
 - Reactor-off period:
 - background only
 - Signal to background ratio
 ~23
- Comparison with Huber and Mueller's flux model
 - 5 MeV excess is clear
 - Disagreement around 1 MeV

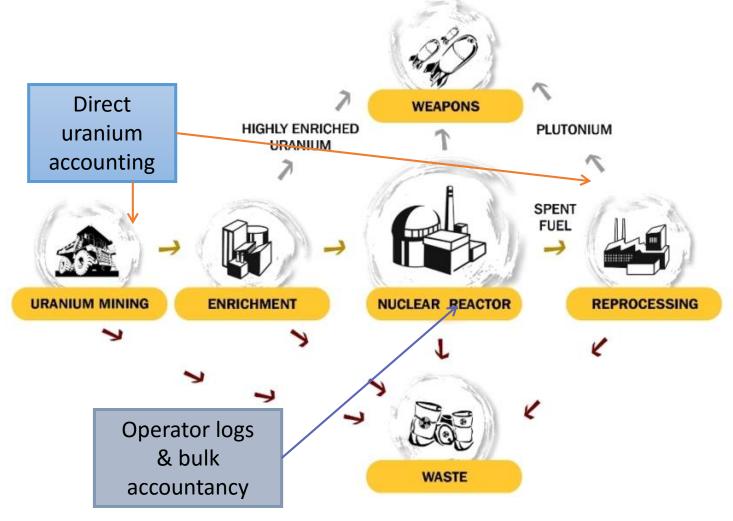
Sterile's

• Global and Pragmatic 3+1 fits

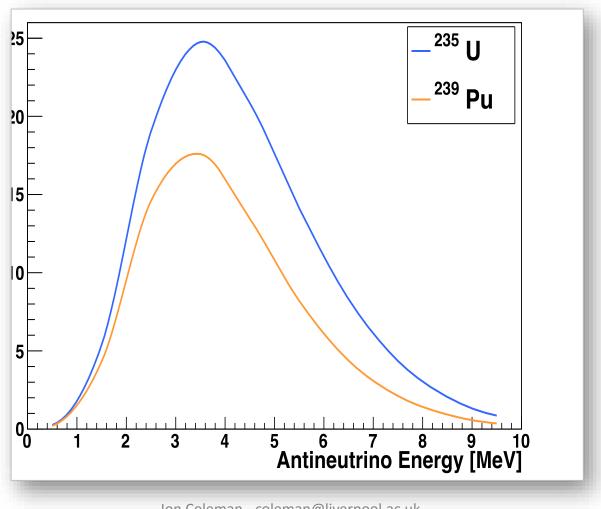
Not yet included ICECUBE and MINOS

What's Next

- Resolving the existence of the anomalies determining whether new-physics exists.
- Any improvements in understanding the quantity and nature of antineutrinos emitted from nuclear reactors will help in non-proliferation monitoring of those reactors.


Need for spectral measurements

- Directly test the hypothesis of a new oscillation with Δm2 ~ 1 eV2,
 - i.e. oscillation length of few meters
- Provide new tests of reactor models by making precision measurements of 235U fuel

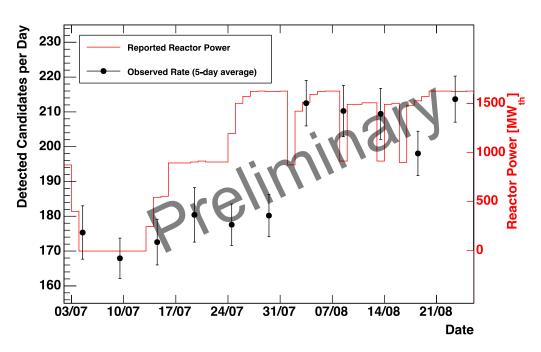

Applications

- Used to better determine the interior of a reactor from a stand-off distance
 - Decoupled from Power plant operation
- Work is underway to demonstrate deployable detectors with spectral capability
 - Rate and Spectral Anomalies add more information

Fissile material Accountancy

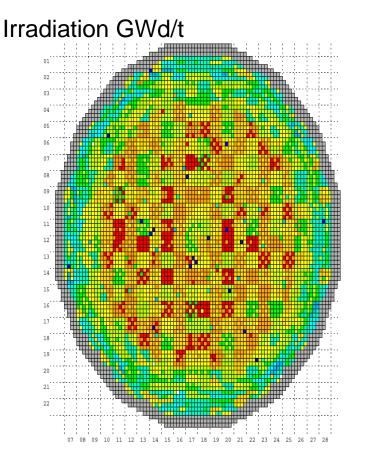
Energy Spectrum differences in fuel

Vidarr: an example


- Modified design from T2K-Ecal Module
 - Demonstrate design and fit-for-purpose

Vidarr Deployment

- Least favourable conditions
 - At least 60m from a reactor core
 - No overburden
- Working on:
 - upgrades to hardware
 - spectral measurement
 - Complete Isotope model of reactor core


05/12/2016

Robert Mills (NNL), et al.

Vidarr: Reactor Model

Wylfa reactor 1

- 6156 fuel channels containing up to 8 elements.
- 0.711 or 0.8% 235U enriched fuel.
- Online refuelling.
- Complete power history (per day)
- PANTHER models for power at monthly intervals

Robert Mills (NNL), et al.

Anti-neutrino calculation

- Work done so far used FISPIN to generate inventories for all 49248 rods in core during each day of irradiation with irradiation/cooling history.
- Then used bespoke code to generate anti-neutrino spectra for each rod during each day.

Future work:

- Use these data to generate an anti-neutrino flux over detector (magnitude and angular distribution Φ and Θ)codes developed and tested but yet to be applied.
- Support University of Liverpool in modelling detector using GEANT4.

A whole series of experiments aimed at reactor monitoring and spectral measurements

- NEOS
- NuLat
- Nucifer
- PANDA
- VIDARR
- WATCHMAN

- Solid
- Chandler
- PROSPECT
- miniTimeCube
- Stereo
- Efforts also at
 - BARC, India
 - Akkyu, Turkey

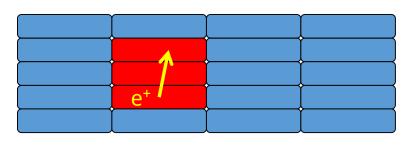
See http://hep.ph.liv.ac.uk/aap2016/ for more info

Summary

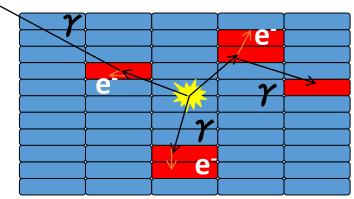
- RAA is being addressed by improved experiments
- Parameter space for Sterile neutrinos is reduced
- Reactor Shoulder at 5 MeV
 - Measured in multiple high-resolution experiments
 - Not understood
- New generation of compact detectors
 - Precision spectral measurements
 - Deployable

Thanks and Acknowlegements

- Robert Mills, David Mountford, Matt Ryan NNL
- George Holt, Carl Metelko, Matt Warburton, Yan-Jie Schnellbach – U. of Liverpool


BACK-UP

Liverpool Detector: Adapting T2K Tech


- Pb → Gd sheets for neutron capture
 - High cross-section
 - 8 MeV γ-rays cascade
- Pulsed operation → triggered operation
- Cosmic ray veto
- Adapted housing, cooling and shielding

Liverpool Detector: Particle

- Contained track
- Concurrent in time
- $dE/dx \approx 1.8 \text{ MeV/cm}$
- E_{max} ≈ 8 MeV
- Immediately after inverse β-decay

- 8 MeV γ cascade upon capture
- Multiple Compton scatters
- Spatially diffuse hits coincident in time
- Ca. 10 µs after positron

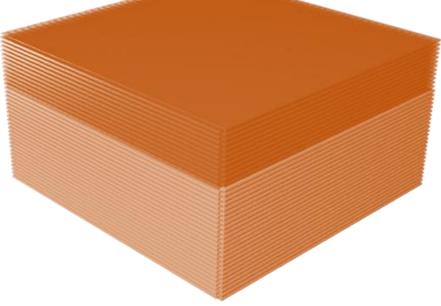
Distinct double co-incidence signal

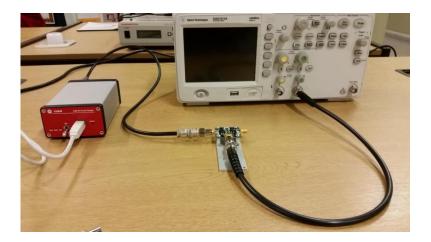
Results: Candidate Event Neutron Positron

Outlook: Current Work

- Post-Wylfa Work:
 - Wylfa was shutdown permanently 31st Dec 15
 - Mobile lab & detector returned to Liverpool
 - Background studies underway

- Collaboration with National Nuclear Laboratory (NNL)
 - See presentation by Robert Mills tomorrow!





Outlook: VIDARR Detector

• Extrapgasa Operade:

- 50% more target mass
- c. 2000 → c. 3000 channels
- Full replacement of WLS fibre
- MPPC upgrade:
 - Switch to latest-gen Hamamatsu MPPC
 - c. 10x larger gain
 - c. 10x less dark noise
 - c. 2x photo diode efficiency

Outlook: VIDARR Electronics

- Electronics upgrade:
 - signals (0-10 MeV)
 - Low threshold (1 PE) and <10ns timing
 - Increase coincidence window to c. 100 μs

- Architecture:
 - 64-channel analogue board
 - 64-channel Fast ADC mezzanine board
 - ADC boards read out via optical link by backend board

