

LSND Experiment:

- at LAMPF, 1993-1998
- 800 MeV protons on v-target
- DAR and DIF v
- detector 30 m downstream
- liquid scintillator $\left(\mathrm{CH}_{2}\right)$
- 1220, 8" PMTs
- reconstruction:
- charged particles/photons via scint and Cerenkov
- muon decays (μ->evv)
- neutrons via delayed capture (np -> d γ)

LSND Experiment:

- at LAMPF, 1995-1998
- 800 MeV protons on v-target
- DAR and DIF v
- detector 30 m downstream
- liquid scintillator $\left(\mathrm{CH}_{2}\right)$
- 1220, 8" PMTs
- reconstruction:
- charged particles/photons via scint and Cerenkov
- muon decays (μ->evv)
- neutrons via delayed capture (np -> d γ)

LA Science 25, 1997

A Thousand Eyes The story of LSND

Bill Louis, Vern Sandberg, and Hywel White as told to David Kestenbaum

There is no original truth, only original error. Gaston Bachelard (1884-1962)

David Kestenbaum

Correspondent

Δ
David Kestenbaum is a correspondent for NPR, covering science, energy issues and, most recently, the global economy for NPR's multimedia project Planet Money. David has been a science correspondent for NPR since 1999. He came to journalism the usual way - by getting a Ph.D. in physics first.

In his years at NPR, David has covered science's discoveries and its darker side, including the Northeast blackout, the anthrax attacks and the collapse of the New

LSND cross section measurements

${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right){ }^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s} .}$
${ }^{12} \mathrm{C}\left(\dot{\nu}_{e}, e^{-}\right){ }^{12} \mathrm{~N}^{*}$

FIG. 1. Flux shape of neutrinos from pion and muon decay at rest.
id e+/-:

PHYSICAL REVIEW C, VOLUME 64, 065501

Measurements of charged current reactions of $\boldsymbol{\nu}_{\boldsymbol{e}}$ on ${ }^{12} \mathrm{C}$

L. B. Auerbach, ${ }^{8}$ R. L. Burman, ${ }^{5}$ D. O. Caldwell, ${ }^{3}$ E. D. Church, ${ }^{1}$ J. B. Donahue, ${ }^{5}$ A. Fazely, ${ }^{7}$ G. T. Garvey, ${ }^{5}$
R. M. Gunasingha, ${ }^{7}$ R. Imlay, ${ }^{6}$ W. C. Louis, ${ }^{5}$ R. Majkic, ${ }^{8}$ A. Malik, ${ }^{6}$ W. Metcalf, ${ }^{6}$ G. B. Mills, ${ }^{5}$ V. Sandberg, ${ }^{5}$ D. Smith, ${ }^{4}$ I. Stancu, ${ }^{1, *}$ M. Sung, ${ }^{6}$ R. Tayloe,,${ }^{5, \dagger}$ G. J. VanDalen, ${ }^{1}$ W. Vernon, ${ }^{2}$ N. Wadia, ${ }^{6}$ D. H. White, ${ }^{5}$ and S. Yellin ${ }^{3}$
id Ngs
via $\beta-\mathrm{dk}$

FIG. 9. The distribution of time differences between the elec trons and β in the exclusive sample of ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)^{12} \mathrm{~N}_{\text {g.s. }}$ is compared with the expected β lifetime. The dotted line shows the calculated accidental contribution.

FIG. 6. The observed and expected (solid line) energy distributions for electrons from ${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right)^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s}}$.

FIG. 11. The distribution of β energy from the exclusive sample ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)^{12} \mathrm{~N}_{\mathrm{gs} .}$. The dashed line shows the estimated accicluding the accidental contribution) from the Monte Carlo sim tion, normalized to the data.

FIG. 10. Observed and expected (solid line) e^{+}energy distribution for the ${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right){ }^{12} \mathrm{~N}_{\text {g.s. }}$ sample.

LSND cross section measurements

${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right){ }^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s} .}$.

$$
{ }^{12} \mathrm{C}\left(\dot{\nu}_{e}, e^{-}\right){ }^{12} \mathrm{~N}^{*}
$$

FIG. 11. The measured and expected (solid line) cross section for the process ${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right)^{12} \mathrm{~N}_{\text {g.s. }}$

PHYSICAL REVIEW C, VOLUME 64, 06550

Measurements of charged current reactions of $\boldsymbol{\nu}_{e}$ on ${ }^{12} \mathrm{C}$
L. B. Auerbach, ${ }^{8}$ R. L. Burman, ${ }^{5}$ D. O. Caldwell, ${ }^{3}$ E. D. Church, ${ }^{1}$ J. B. Donahue, ${ }^{5}$ A. Fazely, ${ }^{7}$ G. T. Garvey, ${ }^{5}$ R. M. Gunasingha, ${ }^{7}$ R. Imlay, ${ }^{6}$ W. C. Louis, ${ }^{5}$ R. Majkic,,${ }^{8}$ A. Malik, ${ }^{6}$ W. Metcalf, ${ }^{6}$ G. B. Mills, ${ }^{5}$ V. Sandberg, ${ }^{5}$ D. Smith, I. Stancu, ${ }^{1, *}$ M. Sung, ${ }^{6}$ R. Tayloe, ${ }^{\text {,' }}$ G. J. VanDalen, ${ }^{1}$ W. Vernon, ${ }^{2}$ N. Wadia, ${ }^{6}$ D. H. White, ${ }^{5}$ and S. Yellin

TABLE V. Measurements and theoretical nredictions of the flux averaged cross section for the proce $\mathrm{s}{ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right){ }^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s} .}$.

Experiment

LSND	$(8.9 \pm 0.3 \pm 0.9) \times 10^{-42} \mathrm{~cm}^{2}$
LSND(previous) [3]	$(10.5 \pm 1.0 \pm 1.0) \times 10^{-42} \mathrm{~cm}^{2}$
E225 [1]	$(9.1 \pm 0.5 \pm 0.8) \times 10^{-42} \mathrm{~cm}^{2}$
KARMEN [2]	
Theory	$9.4 \times 10^{-42} \mathrm{~cm}^{2}$
Donnelly [5]	$9.2 \times 10^{-42} \mathrm{~cm}^{2}$
Fukugita et al. $[4]$	$8.9 \times 10^{-42} \mathrm{~cm}^{2}$
Kolbe et al. $[7]$	$8.0 \times 10^{-42} \mathrm{~cm}^{2}$
Mintz et al. $[28]$	

TABLE IX. Measurements and theoretical predictions of the flux averaged cross section for the proces ${ }^{12} \mathrm{C}\left(\nu_{e}, e^{-}\right)^{12} \mathrm{~N}^{*}$.

Experiment	
LSND	$(4.3 \pm 0.4 \pm 0.6) \times 10^{-42} \mathrm{~cm}^{2}$
LSND(previous) [3]	$(3.6 \pm 2.0) \times 10^{-42} \mathrm{~cm}^{2}$
E225 [1,36]	$(5.1 \pm 0.6 \pm 0.5) \times 10^{-42} \mathrm{~cm}^{2}$
KARMEN [32]	
Theory	
Kolbe et al. $[6]$	$6.3 \times 10^{-42} \mathrm{~cm}^{2}$
Kolbe et al. $[7]$	$5.5 \times 10^{-42} \mathrm{~cm}^{2}$
Hayes et al. $[9]$	$4.1 \times 10^{-42} \mathrm{~cm}^{2}$

LSND cross section measurements

$$
\nu_{\mu}+{ }^{12} \mathrm{C} \longrightarrow \mu^{-}+{ }^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s}}
$$

$$
\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+X
$$

FIG. 2. The solid line shows the flux shape of ν_{μ} from π^{+} decay in flight. The dashed line shows the $\bar{\nu}_{\mu}$ flux from π^{-}decay in flight for the same integrated proton beam. The muon production threshold energy for each spectrum is shown by a vertical line.

PHYSICAL REVIEW C 66, 015501 (2002)

Measurements of charged current reactions of $\boldsymbol{\nu}_{\mu}$ on ${ }^{12} \mathrm{C}$

L. B. Auerbach, ${ }^{8}$ R. L. Burman, ${ }^{5}$ D. O. Caldwell, ${ }^{3}$ E. D. Church, ${ }^{1}$ J. B. Donahue, ${ }^{5}$ A. Fazely, ${ }^{7}$ G. T. Garvey, ${ }^{5}$ R. M. Gunasingha, ${ }^{7}$ R. Imlay, ${ }^{6}$ W. C. Louis, ${ }^{5}$ R. Majkic, ${ }^{8}$ A. Malik, ${ }^{6}$ W. Metcalf, ${ }^{6}$ G. B. Mills, ${ }^{5}$ V. Sandberg, ${ }^{5}$ D. Smith, ${ }^{4}$ I. Stancu, ${ }^{1, *}$ M. Sung, ${ }^{6}$ R. Tayloe, ${ }^{5, \dagger}$ G. J. VanDalen, ${ }^{1}$ W. Vernon, ${ }^{2}$ N. Wadia, ${ }^{6}$ D. H. White, ${ }^{5}$ and S. Yellin ${ }^{3}$
id μ :

FIG. 4. The observed energy distribution of electrons from μ^{-} decay for the inclusive sample, ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right) X$. The histogram shows the expected energy distribution of Michel electrons from Monte Carlo simulation.
id Ngs
via $\beta-\mathrm{dk}$:

FIG. 9. The distribution of time differences between the electrons and β in the exclusive sample of ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)^{12} \mathrm{~N}_{\mathrm{g} . \mathrm{s}}$ is compared with the expected β lifetime. The dotted line shows the calculated accidental contribution.

FIG. 11. The distribution of β energy from the exclusive sample of ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)^{12} \mathrm{~N}_{\mathrm{g} .}$. The dashed line shows the estimated accidental contribution. The solid line shows the expected shape (infrom the Monte Carlo simulation, normalized to the data-

LSND cross section measurements

$$
\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+{ }^{12} \mathrm{~N}_{\text {g.s. }}
$$

$$
\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+X
$$

FIG. 14. The measured cross section for the process ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right){ }^{12} \mathrm{~N}_{\text {g.s. }}$ compared with three theoretical calculations obtained from Ref. [32].

TABLE V. Beam-excess events, background, efficiency, neuaged cross section for the exclusive reaction ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right){ }^{12} \mathrm{~N}_{\text {g.s. }}$.

Corrected beam excess events	77.8 ± 8.9
$\overline{\nu_{\mu}}+{ }^{12} \mathrm{C} \rightarrow \mu^{+}+{ }^{12} \mathrm{~B}_{\text {g.s. }}$	2.7 ± 0.5
Accidental e^{+}background	8.2 ± 0.8
$\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+{ }^{12} \mathrm{~N}_{\text {g.s. }}$	66.9 ± 9.0
Efficiency	$16.3 \pm 1.2 \%$
ν_{μ} flux $\left(E_{\nu}>123.1 \mathrm{MeV}\right)$	$2.03 \times 10^{12} \mathrm{~cm}^{-2}$
$\langle\sigma\rangle$ measured	$(5.6 \pm 0.8 \pm 1.0) \times 10^{-41} \mathrm{~cm}^{2}$
$\langle\sigma\rangle$ theory	
Engel et al. $[32]$	$6.4 \times 10^{-41} \mathrm{~cm}^{2}$
Kolbe et al. $[9]$	$7.0 \times 10^{-41} \mathrm{~cm}^{2}$
Volpe et al. $[10]$	$6.5 \times 10^{-41} \mathrm{~cm}^{2}$
Hayes and Towner $[11]$	$5.6 \times 10^{-41} \mathrm{~cm}^{2}$

TABLE VI. Beam-excess events, background, efficiency, neutrin_flux, and flun_averaged cross section for the inclusive reaction
${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right){ }^{12} X$.

Corrected beam excess events	2464 ± 50
$\overline{\nu_{\mu}}+p \rightarrow \mu^{+}+n$	217 ± 35
$\overline{\nu_{\mu}}+{ }^{12} \mathrm{C} \rightarrow \mu^{+}+X$	71 ± 35
$\nu_{\mu}+{ }^{13} \mathrm{C} \rightarrow \mu^{-}+X$	24 ± 12
$\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+X$	2152 ± 56
Efficiency	$(27.7 \pm 1.9) \%$
ν_{μ} flux $\left(E_{\nu}>123.1 \mathrm{MeV}\right)$	$(10.6 \pm 0.3 \pm 1.8) \times 10^{-40} \mathrm{~cm}^{2}$
$\langle\sigma\rangle$ measured	
Theory	$17.5 \times 10^{-40} \mathrm{~cm}^{2}$
Kolbe et al. $[9]$	$15.2 \times 10^{-40} \mathrm{~cm}^{2}$
Volpe et al. $[10]$	$13.8 \times 10^{-40} \mathrm{~cm}^{2}$
Hayes and Towner $[11]$	

next, MiniBooNE

MB proposal cross section chapter was a bit... terse

Chapter 9

Non-oscillation Neutrino Physics with MiniBooNE

Win the MiniBooNE detector and FNAL Booster neutrino source, a plethora of nuclear and par licle physics using the neutrino as a probe could be investigated. These topics include the role of
trangeness in the proton, the behavior of the axial vector mass and coupling constant in nuclear strangeness in the proton, the behavior of the axial vector mass and coupling constant in nucle
matter, the helicity structure of the weak neutral current, and the neutrino magnetic moment.

The large-mass MiniBooNE detector along with the intense Booster neutrino source will create The larted neutrino reaction rates at these energies. The number of expected events for severe interesting channels are listed in Table 9.1. These numbers are calculated assuming one year of running $\left(2 \times 10^{7} \mathrm{~s}\right)$ at each polarity at an average rate of 2.5×10^{13} protons $/ \mathrm{s}$. The fiducial detecto ontains of $1.9 \times 10^{31} \mathrm{CH}_{2}$ molecules and all particle ID efficiencies are assumed to be 50%.
The list below outlines some of the interesting physics that may be investigated with MiniBooNE. Several of the channels (namely, $\nu_{n} C \rightarrow \mu^{-} N$ and $\nu_{\mu} C \rightarrow \nu_{\mu} \pi^{0} X$) will need to be un-
derstood thoroughly for neutrino oscillation background estimates. The others, while not potential backgrounds, have the possibility of yielding exciting physics. More detailed feasibility studies ar currently underway.

- Neutrino-Nucleon Elastic Scattering and a Measurement of G_{s}

The $\nu p \rightarrow \nu p$ and $\nu n \rightarrow \nu n$ reactions (where ν is a ν_{μ} or a $\bar{\nu}_{\mu}$) offer the possibility of extracting G_{s}, the strange quark axial form factor of the nucleon. The ratio of neutrino elastic scattering sensitive measure of G_{s} and dependent only weakly upon the F_{2}^{s} form factor ${ }^{65)}$. More exactly, if this ratio is measured for both antineutrinos and neutrinos, G_{s} and F_{2}^{s} are separable ${ }^{66)}$. precision measurement of this ratio will be difficult with MiniBooNE due to the difficulty of separating neutrons and protons and perhaps a dedicated experiment closer to the neutrino form factors through the neutral-current/charge-current neutrino-antineutrino asymmetry ${ }^{677}$) This method is currently under study.

- Neutrino Charged-Current Scattering

The $\nu_{\mu}{ }^{12} C \rightarrow \mu^{-12} N$ and $\bar{\nu}_{\mu}{ }^{12} C \rightarrow \mu^{+12} B$ reactions will be measured to high precision comparing the two as a function of Q^{2}, which allows a M_{A}, the axial-vector dipole mass, by bound protons in the $\bar{\nu}_{\mu}$ channel.

- Neutral-Current π^{0} Production

A proposal for an experiment to measure $\nu_{\mu} \rightarrow \nu_{e}$ oscillations and ν_{μ} disappearance at the Fermilab Booster:

BooNE
December 7, 1997

Table 9.1. Expected number of detected events in 1 year of running at each horn polarity for selected neutrino channels in the MiniBooNE detector.

ν_{μ} reaction	events	$\bar{\nu}_{\mu}$ reaction	events
$\nu_{\mu} C \rightarrow \mu^{-} N$	510,000	$\bar{\nu}_{\mu} C \rightarrow \mu^{+} B$	150,000
$\nu_{\mu} e \rightarrow \nu_{\mu} e$	130	$\bar{\nu}_{\mu} e \rightarrow \bar{\nu}_{\mu} e$	60
$\nu_{\mu} C \rightarrow \mu^{-} \pi^{0} X$	65,000	$\bar{\nu}_{\mu} C \rightarrow \mu^{+} \pi^{0} X$	21,000
$\nu_{\mu} n, p \rightarrow \nu_{\mu} n, p$	72,000	$\bar{\nu}_{\mu} n, p \rightarrow \bar{\nu}_{\mu} n, p$	18,000

A measure of $\nu_{\mu} C \rightarrow \nu_{\mu} \pi^{0} X$ is a sensitive probe of the structure of the weak neutral-current. ignificant gains in precision will be achieved over previous experiments in this energy region This will enable a test of the standard model prediction of the helicity structure of the weak neutral-current
Neutrino-Electron Neutral-Current Scattering
By measuring the $\nu_{\mu} e^{-} \rightarrow \nu_{\mu} e^{-}$cross section and its behavior at low- Q^{2}, we will search for evidence of a magnetic moment of the muon-neutrino. If the neutrino is a Majorana particle (and CPT holds) the neutrino must have no magnetic moment. Thus, a measurement of a non-vanishing magnetic moment is proof that the neutrino is a Dirac particle. This is a difficult measurement due to the small cross section for this process, however, an non-zero magnetic moment could be of relevance in the solar neutrino problem.

MiniBooNE...

. fortunately cross section results output was high..

4. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section (365) MiniBooNE Collaboration (AA. Aguilar-Arevalo (Mexico U., CEN) et al.). Feb 2010. 21 pp.
 Published in Phys.Rev. D81 (2010) 092005
 FERMILAB-PUB-10-046-E
 DOI: $10.1103 /$ PhysRevD. 81.092005
 e-Print arXiv:1002.2680 [hep-ex] I PDF
 References | BibleX L LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
 (tarmation Bridge Server, Fermilab Library Server (fultext available); Fermilab Today Result of the Week Detailed record - Cited by 365 records

Refereed publications by the MiniBooNE Collaboration:

A. A.A. Aguilar-Arevalo et al., Measurement of the Antineutrino Neutral-Current Elastic Differential Cross Section, arXiv: 1309.7257 , Phys. Rev. D91, 012004 (2015), Data Release

- A.A. Aguilar-Arevalo et al., First Measurement of the Muon Antineutrino Double Differential Charged Current Quasi-Elastic Cross Section, arXiv: 1301.7067 , Phys. Rev. D88, 032001 (2013), Result of the Week, Data Release
G. Cheng et al., "Dual Baseline search for Muon Antineutrino Disappearance at $0.1<\Delta \mathrm{m}^{2}<100 \mathrm{ev}^{2 "}$ " arXiv:1208.0322, Phys. Rev. D86, 052009 (2012), Result of the Week
- A.A. Aguilar-Arevalo et al., "Improved Search for vi, to ve; and $\overline{v_{\|}}$to $\overline{v_{e}}$; Oscillations in the MiniBooNE Experiment" arXiv:1303.2588, Phys. Rev. Lett. 110, 161801 (2013), Result of the Week
${ }^{\circ}$ A.A. Aguilar-Arevalo et al., "A Combined v_{μ} to v_{e}; and $\overline{v_{1}}$ to $\overline{v_{e} ;}$ Oscillation Analysis of the MiniBooNE Excess", arXiv:1207.4809, Data release
A.A. Aguilar-Arevalo et al., "Test of Lorentz and CPT Violation with Short Baseline Neutrino Oscillation Excesses", arXiv: 1109.3480 [hep-ex], submitted to Phys. Lett. B.
K.B.M. Mahn et al., "Dual Baseline Search for muon neutrino disappearance at $0.5 \mathrm{eV}^{2}<\Delta \mathrm{m}^{2}<40 \mathrm{ev}^{2 "}$ arXiv:1106.5685 [hep-ex], Phys. Rev. D85, 032007 (2012)
A.A. Agular-Arevalo et al., "Measurement of the Neutrino Component of an Anti-Neutrino Beam Observed by a Non-Magnetized Detector", arXiv: 1102.1964 [hep-ex], Phys. Rev. D84, 072005 (2011)
A.A. Aguilar-Arevalo et al., "Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral oil at Ey ~ 1 GeV", arXiv:1011.3572 [hep-ex], Phys. Rev. D83, 052007 (2011), Data release
- A.A. Aguilar-Arevalo et al., "Measurement of v Induced Charged Current Neutral Pion Production Cross-Sections on Mineral Oil at $\mathrm{E}_{\mathrm{y}} \in 0.5-2.0 \mathrm{GeV}$ ", arXiv: 1010.3264 [hep-ex], Phys. Rev. D83, 052009 (2011), Data release
A.A. Aguilar-Arevalo et al., "Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section. arXiv:1007.4730 [hep-ex], Phys. Rev. D82, 092005 (2010), Data release
A.A. Aguilar-Arevalo et al., "Event Excess in the MiniBooNE Search for Muon Antineutrino to Electron Antineutrino Oscillations", arXiv:1007.1150 [hep-ex], Phys. Rev. Lett. 105181801 (2010), Result of the Week, Press
- A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Neutrino Charged Current Ouasielastic Double Differential A.A. Agular-Arevalo et al., "First Measurement of the Muon Neutrino Charged Current Quasielastic Double Diffe
Cross Section", arXiv: $1002: 2680$ [hep-ex], Phys. Rev. D81, 092005 (2010), Result of the Week, Data release
A.A. Aguilar-Arevalo et al., "Measurement of v_{μ} and v_{μ} induced neutral current single $n 0$ production cross sections on release
A.A. Aguilar-Arevalo et al., "A Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector" arXiv:0910.3182 [hep-ex], Phys. Rev. D81, 032001 (2010), Result of the Week
A.A. Aguilar-Arevalo et al., "Measurement of the $\mathrm{v}_{\mu} \mathrm{CC}$ pi+/QE Cross Section Ratio on Mineral Oil in a 0.8 GeV Neutrino Beam", arXiv:0904.3159 [hep-ex], Phys. Rev. Lett. 103, 081801 (2009)
- A.A. Aguilar-Arevalo et al., "A Search for Electron Anti-Neutrino Appearance at the $\Delta \mathrm{m}^{2} \sim 1 \mathrm{eV}^{2}$ Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009), Result of the Week, Data release
A.A. Aguilar-Arevalo et al., "A Search for Muon Neutrino and Anti-Neutrino Disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009), Data release
- A.A. Aguilar-Arevalo et al., "Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009), Data release
- P. Adamson et al., "First Measurement of v_{μ} and v_{e} Events in an Off-Axis Horn-Focused Neutrino Beam", arXiv:0809.2447 [hep-ex], Phys. Rev. Lett. 102, 211801 (2009)
A.A. Aguilar-Arevalo et al., "The MiniBooNE Detector"
arXiv:0806.4201 [hep-ex], Nucl. Instr. Meth. A599 (2009) 28-46
A.A. Aguilar-Arevalo et al., "The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D79, 072002 (2009), Data release
- A.A. Aguilar-Arevalo et al., "Compatibility of high $\Delta m^{2} v_{e}$ and vebar Neutrino Oscillation Searches", arXiv:0805.1764 [hep-ex], Phys. Rev. D78, 012007 (2008)
\circ A.A. Aguilar-Arevalo et al., "First Observation of Coherent n^{0} Production in Neutrino Nucleus Interactions with $\mathrm{E}_{\mathrm{v}}<2$ GeV", arXiv:0803.3423 [hep-ex], Phys. Lett. B664, 41 (2008)
A.A. Aguilar-Arevalo et al., "Constraining Muon Internal Bremsstrahlung As A Contribution to the MiniBooNE Low Energy Excess" arXiv:0710.3897 [hep-ex]
A.A. Aguilar-Arevalo et al., "Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon", arxiv:0706.0926 [hep-ex], Phys. Rev. Lett. 100, 032301 (2008)
A.A. Aguilar-Arevalo et al., "A Search for Electron Neutrino Appearance at the $\Delta \mathrm{m}^{2} \sim 1 \mathrm{eV}^{2}$ Scale", A.A. Agular-Arevalo et al., ${ }^{\text {A }}$, Search for Electron Neutrino Appearance at the $\Delta \mathrm{m}^{2} \sim 1 \mathrm{eV} \mathrm{V}^{2} \mathrm{~S}$
arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007), Press release, Data release

MiniBooNE experiment, overview

LSND cross section measurements

- MiniBooNE results (from CH 2) (PRL100, 0323021, '08)
- Q ${ }^{2}$ spectrum of data, compared to "world average model" (dashed)
- event excess at $\mathrm{Q}^{2}>0.2 \mathrm{GeV}^{2}$
- also event deficit at $Q^{2}<0.2 \mathrm{GeV}^{2}$
- could not get satisfactory fit (at low Q^{2} with only M_{A} so had to add new parameter κ that increases Pauli-blocking of outgoing nucleon
- shape-only fit of Q^{2} distribution yielded:

$$
\begin{gathered}
M_{A}^{\mathrm{eff}}=1.23 \pm 0.20 \mathrm{GeV} \\
\kappa=1.019 \pm 0.011
\end{gathered}
$$

Measurement of Muon Neutrino Quasielastic Scattering on Carbon

FIG. 2. Reconstructed Q^{2} for ν_{μ} CCQE events including systematic errors. The simulation, before (dashed curve) and after (solid curve) the fit, is normalized to data. The dotted curve (dotdashed curve) shows backgrounds that are not CCQE (not "CCQE-like"). The inset shows the 1σ C.L. contour for the best-fit parameters (star), along with the starting values (circle), and fit results after varying the background shape (triangle).

к , "kappa", ("elosf")

[^0]
ASPECTS of the FERMI GAS MODEL AS IMPLEMENTED in NUANCE

G. GARVEY

OCT. 2006
${ }^{3}$ Rex, Teppei and Sam has shown that a less than 1% increase in cloSF has a remarkable effect on bringing the low Q^{2} QE data into line and allowing more reasonable values of p_{F}, E_{b} and M_{A}.
عloSF is a bound on the initial energy of the struck nucleon (momentum?) such that with a given momentum transfer \mathbf{q} it can exceed the Fermi Energy and thereby participate in QE scattering.

I will continue to work on this but you should not be anxious about it. The remedy that Rex et al found looks harmless, works well and should be employed.

к , "kappa", ("elosf")

MiniBooNE, cross section measurements

need a flux prediction, not normed to CCQE xsection...

PHYSICAL REVIEW D 79, 072002 (2009)

Neutrino flux prediction at MiniBooNE

HARP measurements

FIG. 2: (color online) Predicted ν_{μ} flux at the MiniBooNE detector (a) along with the fractional uncertainties grouped into various contributions (b). The integrated flux is $5.16 \times$ $10^{-10} \nu_{\mu} / \mathrm{POT} / \mathrm{cm}^{2}\left(0<E_{\nu}<3 \mathrm{GeV}\right)$ with a mean energy of 788 MeV . Numerical values corresponding to the top plot are provided in Table V in the Appendix.

MiniBooNE, CCQE xsection

- charged particles in MB create cherenkov (and some scintillation) light
- tracks reconstructed (energy, direction, position) with likelihood method utilizing time, charge of PMT hits (NIM, A 608 (2009), pp. 206-224)
- in addition, muon, pion decays are seen by recording PMT info for $20 \mu \mathrm{~s}$ around $2 \mu \mathrm{~s}$ beam spill
- In this analysis, all observables are formed from muon energy (E_{μ}) and muon scattering angle (θ_{μ})

- Energy of the neutrino $E_{v}{ }^{Q E}$ and 4momentum transfer $Q^{2}{ }_{Q E}$ can be reconstructed by these 2 observables, under the assumption of CCQE interaction with bound neutron at rest ("QE assumption")

MiniBooNE, CCQE xsection, results

MiniBooNE, CCQE xsection, results

PHYSICAL REVIEW D 81, 092005 (2010)
First measurement of the muon neutrino charged current quasielastic double differential cross section

Thanks, Gerry!
A. A. Aguilar-Arevalo, ${ }^{13}$ C. E. Anderson, ${ }^{18}$ A. O. Bazarko, ${ }^{15}$ S. J. Brice, ${ }^{7}$ B.C. Brown, ${ }^{7}$ L. Bugel, ${ }^{5}$ J. Cao, ${ }^{14}$ L. Coney, ${ }^{5}$ LM. Gemad. ${ }^{12}$ D. C. Cox, ${ }^{9}$ A. Curioni, ${ }^{18}$ Z. Djurcic, ${ }^{5}$ D. A. Finley, ${ }^{7}$ B. T. Fleming, ${ }^{18}$ R. Ford, ${ }^{7}$ F. G. Garcia, ${ }^{7}$ G. T. Garvey, ${ }^{10}$. Grange, ${ }^{8}$ C. Green, ${ }^{7,10}$ J. A. Green, ${ }^{9,10}$ T. L. Hart, ${ }^{4}$ E. Hawker, ${ }^{3,10}$ R. Imlay, ${ }^{11}$ R. A. Johnson, ${ }^{3}$
G. Karagiorg, ${ }^{2}$ P. Kasper, ${ }^{7}$ T. Katori, ${ }^{9,12}$ T. Kobilarcik, ${ }^{7}$ I. Kourbanis, ${ }^{7}$ S. Koutsoliotas, ${ }^{2}$ E. M. Laird, ${ }^{15}$ S. K. Linden, ${ }^{18}$ J. M. Link,,17 Y. Liu, ${ }^{14}$ Y. Liu, ${ }^{1}$ W.C. Louis, ${ }^{10}$ K. B. M. Mahn, ${ }^{5}$ W. Marsh, ${ }^{7}$ C. Mauger, ${ }^{10}$ V. T. McGary ${ }^{12}{ }^{12}$ G. McGregor, ${ }^{10}$ W. Metcalf, ${ }^{11}$ P. D. Meyers, ${ }^{15}$ F. Mills, ${ }^{7}$ G. B. Mills, ${ }^{10}$ J. Monroe, ${ }^{5}$ C. D. Moore, ${ }^{7}$ J. Mousseau, ${ }^{8}$ R. H. Nelson, ${ }^{4}$
P. Nienaber, ${ }^{16}$ J. A. Nowak, ${ }^{11}$ B. Osmanov, ${ }^{8}$ S. Ouedraogo, ${ }^{11}$ R. B. Patterson, ${ }^{15}$ Z. Pavlovic, ${ }^{10}$ D. Perevalov, ${ }^{1}$ C. C. Polly, ${ }^{7}$ E. Prebys, ${ }^{7}$ J.L. Raaf, ${ }^{3}$ H. Ray, ${ }^{8,10}$ B. P. Roe, ${ }^{14}$ A.D. Russell, ${ }^{7}$ V. Sandberg, ${ }^{10}$ R. Schirato, ${ }^{10}$ D. Schmitz, ${ }^{5}$ M. H. Shaevitz, ${ }^{5}$ F. C. Shoemaker, ${ }^{15, *}$ D. Smith, ${ }^{6}$ M. Soderberg, ${ }^{18}$ M. Sorel, ${ }^{5, \dagger}$ P. Spentzouris, ${ }^{7}$ J. Spitz, ${ }^{18}$ I. Stancu, ${ }^{1}$ R. J. Stefanski, M. Sung,,${ }^{11}$ H. A. Tanaka, ${ }^{15}$ R. Tayloe, ${ }^{9}$ M. Tzanov, ${ }^{4}$ R. G. Van de Water, ${ }^{10}$ M. O. Wascko, ${ }^{11, \#}$ D. H. White, ${ }^{10}$
M. J. Wilking, ${ }^{4}$ H. J. Yang, ${ }^{14}$ G. P. Zeller, ${ }^{7}$ and E.D. Zimmerman ${ }^{4}$
(MiniBooNE Collaboration)

MiniBooNE NC elastic results

NCel differential cross section
differential cross section:

- from an absolute fit to proton KE distribution
$-\mathrm{M}_{\mathrm{A}}=1.39 \pm 0.11 \mathrm{GeV}$

NCel to CCQE differential cross section ratio
NCel to CCQE differential cross section ratio:

- flux error cancels between the 2 channels
- ratio is consistent with RFG model. So no discrepency in NCel compared to CCQE
also nubar versions
of CCQE/NCE

CC π production

$\mathrm{CC} \pi^{+}, \pi^{0}$ differential cross sections from MiniBooNE:

$$
\begin{gathered}
v_{\mu}+\mathrm{p}(\mathrm{n}) \rightarrow \mu+\Delta^{+(+)} \rightarrow \mu+\mathrm{p}(\mathrm{n})+\pi^{+} \\
v_{\mu}+\mathrm{A} \rightarrow \mu+\mathrm{A}+\pi^{+}
\end{gathered}
$$

- in a variety of kinematic variables
- model independent, absolutely norm'd
- will guide models of pion production including coherent piece (also from SciBooNE, see Waskco talk)
$\mathrm{CC} \pi^{+}$differential cross sections
$\mathrm{CC} \pi^{0}$ differential cross section

MB cross sections, summary

- v charged-current (CC) quasielastic (CCQE)
- detection and normalization signal for oscillations
- charged-current axial formfactor
- v neutral-current (NC) elastic (NCel)
- predicted from CCQE excepting NC contributions to axial form factor (strange quarks)
$-v$ CC production of π^{+}, π^{0}
- background (and perhaps signal) for oscillations
- insight into models of neutrino pion production via nucleon resonances and via coherent production
$-v C C$ inclusive scattering
- should be understood together with exclusive channels
- ~independent of final state details
$-v$ NC production of neutral pions
- very important oscillation background
- complementary to CC pion production

and anti-neutrinos!

Coherent Elastic v-Nucleus Scattering:

"CEvNS":
Coherent Elastic v-Nucleus Scattering: $v \mathrm{~A} \rightarrow \mathrm{vA}$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus. For large nucleus, $R_{N} \sim f e w f m$, and:

$$
E_{\nu} \lesssim \frac{h c}{R_{N}} \cong 50 \mathrm{MeV}
$$

.. but recoil energy is quite small:

$$
E_{r}^{\max } \simeq \frac{2 E_{\nu}^{2}}{M} \simeq 50 \mathrm{keV}
$$

The CEvNS process has yet to be observed...

Coherent Elastic v-Nucleus Scattering:

- Cross section is large...
in fact largest v channel at $\mathrm{O}(10 \mathrm{MeV})$ on heavier nuclei, eg Ar

- and has distinctive
N^{2} dependence

$$
\frac{d \sigma}{d E}=\frac{G_{F}^{2}}{4 \pi}\left[\left(1-4 \sin ^{2} \theta_{w}\right) Z-(A-Z)\right]^{2} M\left(1-\frac{M E}{2 E_{\nu}^{2}}\right) F\left(Q^{2}\right)^{2}
$$

Coherent Elastic v-Nucleus Scattering:

- SM Test
- Irreducible DM WIMP background
- Astrophysics
- Non Standard Interactions
- Nuclear Form Factors/Structure
- Fit recoil spectrum shape to measure $F\left(Q^{2}\right)$
- One isotope can measure v flux
- With two isotopes (e.g. Ar/Xe), ratio of recoil spectra removes flux uncertainty

$$
\frac{d \sigma}{d E}=\frac{G_{F}^{2}}{4 \pi}\left[\left(1-4 \sin ^{2} \theta_{w}\right) Z-(A-Z)\right]^{2} M\left(1-\frac{M E}{2 E_{\nu}^{2}}\right) F\left(Q^{2}\right)^{2}
$$

Ar-C scattering

K. Patton et al, Phys. Rev. C86, 024612 (2012)

COHERENT experiment at SNS/ORNL

ORNL SNS is also an...

- intense ($\sim 1 \mathrm{MWatt}, 0-50 \mathrm{MeV}$).
- pulsed ($60 \mathrm{~Hz}, 600 \mathrm{~ns}$ spill time)...
..v source

SNS v energy spectrum

SNS v time distribution

COHERENT experiment at SNS/ORNL

- a low-background experimental area has been acquired for COHERENT
- 20-29 m from target

LAr for COHERENT

- Single-phase scintillation detector built by J. Yoo, etal at Fermilab for CEvNS effort
- 35-kg fiducial volume
- Readout: $2 \times$ Hamamatsu R591202MOD PMT (8" cryogenic, highgain)
- Excellent nuclear-/electron-recoil PSD demonstrated by miniCLEAN
- SCENE has measured quenching factors ${ }^{1}$
- ${ }^{39} \mathrm{Ar}$ controllable with PSD and duty factor
- $\mathrm{Pb}, \mathrm{Cu}, \mathrm{H} 2 \mathrm{O}$ shielding structure
- Currently being installed at SNS

[^1]
COHERENT experiment at SNS/ORNL

COHERENT experiment at SNS/ORNL

Low-E $v^{40} \mathrm{Ar}$ xsections, perhaps

COHERENT experiment at SNS/ORNL

currently installed and filling. Running starts next week.

[^0]: Sam Zeller, 11/02/06

[^1]: ${ }^{1}$ H. Cao et al., SCENE Collaboration, Phys. Rev. D91 (2015) 092007. arXiv:1406.4825 [physics.ins-det].

