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NOvA 

Fermilab 

NOvA Far Detector (Ash River, MN) 
MINOS Far Detector (Soudan, MN) 

Six primary oscillation 
channels accessible 

   (Over-constrained system) 

    𝜈𝜇→𝜈𝜇     𝜈͞ 𝜇→𝜈͞ 𝜇 

    𝜈𝜇→𝜈x      𝜈͞ 𝜇→𝜈͞ x 
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    𝜈𝜇→𝜈e     𝜈͞ 𝜇→𝜈͞ e   
via charged-current interactions: 

and neutral-current interactions: 



Both NOvA and T2K use 
off-axis beams. 
 
NOvA angle: 14 mrad 
        (figures at right) 
 

T2K angle: 44 mrad 
 

 
Yields narrower energy 
spectrum at the detectors 
 
    → Reduces NC and 𝜈e CC 
 backgrounds in the  
 oscillation analyses 
 while maintaining 
 high 𝜈𝜇 flux at osc. max. 
 
 

Off-axis beam 
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A NOvA cell NOvA detectors 

Fiber pairs 
 from 32 cells 

32-pixel APD 

Far detector: 
   14 kton 
   344,000 channels 

Near detector: 
   0.3 kton 
   20,000 channels 

Extruded PVC cells filled with 
11M liters of scintillator 

instrumented with 
𝜆-shifting fiber and APDs 
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radiation length = 38 cm  
(6 cell depths, 10 cell widths) 
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550 𝜇s exposure of the Far Detector 
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Time-zoom on 10 𝜇s interval during NuMI beam pulse 
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Close-up of neutrino interaction in the Far Detector 
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Near Detector: 10 𝜇s of readout during NuMI beam pulse 
(color ⇒ time of hit) 
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Near Detector: 10 𝜇s of readout during NuMI beam pulse 
(color ⇒ time of hit) 
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Time of all hits in Near Det during NuMI spills (~1 hr) 

9.6 𝜇s 
NuMI pulse 
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Vertexing: 

Accelerator Neutrinos @ INSS 2017 

Clustering: 

Tracking: 
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Far Detector Data Far Detector Simulation 
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Attenuation in the WLS fiber 

 

Stopping muons provide absolute 
energy scale (below) 

Calibration 



Finding muons: 

   - long tracks 
   - appropriate dE/dx profiles 
   - appropriate scattering 

             Resulting classifier 
 
 

  In Far Detector, must 
  also reject cosmic rays: 

     - beam timing (×10-5) 
     - event location and shape (×10-7) 

Cosmic background rate measured 
directly with beam-off data. 

   ⇒  3.5% of 𝜈𝜇 CC candidates in FD 
         are actually mis-ID’d cosmics 
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neutrino 
direction 𝜃Z 

Muon kinematics 

98.4% pure sample in Near Detector 

Excellent agreement with MC simulation 
across several decades of rate 
 



Ehad and E𝜈 

hadronic shower energy 
(calorimetric) reconstructed neutrino energy: 

E𝜈 = E𝜇 + Ehad 

Observed E𝜈 spectrum in the ND 

      ⇒  Predicted E𝜈 spectrum in the FD 
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Far Detector prediction 

(1) Estimate the underlying true energy distribution of selected ND events 

(2) Multiply by expected Far/Near event ratio and 𝜈𝜇→𝜈𝜇 oscillation probability 
    as a function of true energy 

(3) Convert FD true energy distribution into predicted FD reco energy distribution 

Systematic uncertainties assessed by varying all MC-based steps 
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78 events selected 
in Far Detector 

(0 – 5 GeV) 

Clear observation of 𝜈𝜇 disappearance 

Oscillation fit for m2   and 𝜃23 
(syst. uncertainties included in fit via nuisance parameters) 

32 

In the absence of 
oscillations, expect 

473 ± 30 events 
  

(including 3.7 beam bkgnd 
and 2.9 cosmic bkgnd) 

FD 𝜈𝜇 energy spectrum → oscillations 

At 6.05⨯1020 p.o.t.-equivalent 



Non-maximal mixing 

favored at 2.6𝜎 C.L. 
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m2    =  (2.67 ± 0.11) × 10-3 eV2  
 

32 

[NH case] 

4.1% uncertainty 

(MINOS closed at 3.8%) 

 

sin2(𝜃23)  =  (0.40        (0.62      ) –0.02 +0.03 
 –0.03 +0.02

 

Systematic uncertainties still subordinate.  Top systs. are those related to energy calib.  

And compatible overall 

with past measurements 

from MINOS, T2K 



C. Backhouse and RP, NIM A 778, 31 (2015); A. Aurisano et al., 

     JINST 11, P09001 (2016);  J. Bian, arXiv:1510.05708 (2015) 
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𝜈e appearance: backgrounds 

NC 𝜋0 candidate 

𝜈e CC candidate 

y view 

x view 

• 𝜈𝜇→𝜈e  rate is only ~5% 

• Rest of the flux ⇒ backgrounds 
 

Most pernicious background comes from 

𝜋0→𝛾𝛾 decays (example below) 

     ⇨ Must increase signal-to-noise by 100× 

Multiple event classification algorithms 
developed for this purpose. 

Various core techniques: EM shower fitting, event 
template matching, convolutional neural networks 
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Data 

MC 𝜋0 signal 

MC bkgd 

Data 𝜇: 134.2 ± 2.9 MeV 
Data 𝜎:   50.9 ± 2.1 MeV 
  

MC 𝜇:   136.3 ± 0.6 MeV 
MC 𝜎:     47.0 ± 0.7 MeV 

NC 𝜋0 candidates in Near Detector 

𝜈e CC candidates in Near Detector 

Far Detector predictions and 

uncertainties derived from 

Near Detector observations 

and available “standard candles” 

Above: 0.7% intrinsic 𝜈e flux 

measured in Near Det. (not from 

oscillations; an irreducible bkgnd) 

 

Right: Reconstructed 𝜋0 mass 

 →  more 𝜈e-like  → 



FD 𝜈e expectations… 
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For fixed L/E = 0.4 km/MeV 

 

  P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
 

for a 2 GeV neutrino in NOvA 
  

   →  Strong dependence on 𝛿 
        and 𝜈 mass hierarchy* 

 
 

* 𝜈e see different potential than 𝜈𝜇,𝜏 when 
   propagating through matter (here, the earth) 
      ⇒ a hierarchy-dependent effect ! 



large 
𝜈e rate 
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For fixed L/E = 0.4 km/MeV 

 

  P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
 

for a 2 GeV neutrino in NOvA 
  

   →  Strong dependence on 𝛿 
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FD 𝜈e expectations… 



large 
𝜈e rate 

small 
𝜈e rate 
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For fixed L/E = 0.4 km/MeV 
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For fixed L/E = 0.4 km/MeV 

 

  P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
 

for a 2 GeV neutrino in NOvA 
  

   →  Strong dependence on 𝛿 
        and 𝜈 mass hierarchy* 

   →  P ∝ sin2𝜃23     [approx.] 

 
 

* 𝜈e see different potential than 𝜈𝜇,𝜏 when 
   propagating through matter (here, the earth) 
      ⇒ a hierarchy-dependent effect ! 

FD 𝜈e expectations… 
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For fixed L/E = 0.4 km/MeV 

Total prediction: 

~17 to 42 𝜈e candidates 
(depending on osc. pars.) 

Includes 8.2 background 
(~independent of osc. pars.) 

 
Syst. uncertainty:  

±5% signal 
±10% background 

 

  P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
 

for a 2 GeV neutrino in NOvA 
  

   →  Strong dependence on 𝛿 
        and 𝜈 mass hierarchy* 

   →  P ∝ sin2𝜃23     [approx.] 

 
 At 6.05⨯1020 p.o.t.-equiv. 

* 𝜈e see different potential than 𝜈𝜇,𝜏 when 
   propagating through matter (here, the earth) 
      ⇒ a hierarchy-dependent effect ! 

FD 𝜈e expectations… 
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For fixed L/E = 0.4 km/MeV 

Total prediction: 

~17 to 42 𝜈e candidates 
(depending on osc. pars.) 

Includes 8.2 background 
(~independent of osc. pars.) 

 
Syst. uncertainty:  

±5% signal 
±10% background 

Observed in FD data: 

33 𝜈e candidates 

(c
ar

to
o
n
) 

>8𝜎 observation of 𝜈e appearance 

 

  P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
 

for a 2 GeV neutrino in NOvA 
  

   →  Strong dependence on 𝛿 
        and 𝜈 mass hierarchy 

   →  P ∝ sin2𝜃23     [approx.] 

 
 At 6.05⨯1020 p.o.t.-equiv. 

FD 𝜈e expectations… 
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Measure signal in 2D bins of E𝜈 × CVN 

In terms of allowed physical parameters 

 

 

>3𝜎 exclusion of region in 

     IH, lower octant, around 𝛿=𝜋/2 

 

NH preference not signif.: 𝜒2=0.46 
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? 

? 

In non-maximal mixing scenario, 

antineutrino data critical to run plan 
 

 

 



 

× 
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An example point in 𝜈 parameter space 

   Simultaneously break 𝜈3 flavor ambiguity 
   (𝜃23 octant), determine mass hierarchy, and 
   constrain CP phase 𝛿. 

 

NOvA Simulation, (3+3)×1021 p.o.t. (𝜈+𝜈‾) 
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 

× 

And a partially ambiguous point… 

   Hierarchy and 𝛿 information now correlated. 
   Octant preference still established. 

 

NOvA Simulation, (3+3)×1021 p.o.t. (𝜈+𝜈‾) 



T2K, NOvA, and DUNE baselines 

for a single L/E value. 
 

These differ solely via the influence of 

matter effects 

 

Illustrative only! Other parameters are 

held fixed, and experiments (esp. DUNE 

here) probe a range of neutrino energies. 
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NOvA outlook  
  

Detector and beamline operating beautifully 
   ⦁ Currently collecting antineutrino data 
  

Assuming the currently favored neutrino parameters, then… 
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 Rejection of maximal mixing   3𝜎   →  5𝜎 

 Hierarchy determination  95%   →    4𝜎 

 𝜈3 flavor balance   95%   →   3𝜎 

 Evidence for leptonic CP violation 80%   →  95% 

 

c. 2018/2019 

 

c. 2024 Confidence level for… 

Ultimate sensitivities depend greatly on the parameters nature has actually chosen. 

(Current best-fit parameters are rather favorable – good! but tenuous.) 

 

Extended operations + beam improvements (under discussion): 

    ⇒ ~3𝜎 CPv reach achievable at current best-fit parameters 
  

(Also, mitigation in case the true parameters turn out less favorable with time) 



Pause for questions/discussion 
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T2K 

J-PARC 

Super-K 

 Tokai to Kamioka (295 km) 
 Neutrino beam from J-PARC 
 Existing far detector: Super-K 

   - well understood detector 
INGRID and ND280 near detectors 
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Super-K events  
from Super-K collab. 

 Long history of ~GeV events in Super-K 
    - Super-K atmospheric data 

 Major plus: quick, robust analysis from T2K 
    - Recently: substantial analysis upgrades 
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Many graphics (including this one) taken from 

M. Hartz, KEK Seminar, Aug 2017 
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M. Hartz 
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M. Hartz 
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T2K NOvA 

Quasi-elastic scattering: 

      𝜈 + [n] → l 
- + [p] 

 
[target nucleon embedded in a nucleus] 

 

Even if only outgoing lepton is measured 

can estimate neutrino energy: 

 

Measured: 

     pe, Ee, 𝜃e:  momentum, energy, and 

                       direction* of outgoing lepton 
  

 * relative to the (known) direction of the incoming neutrino  
  

Constants: 

     mp, mn, me:  proton, neutron, and lepton masses 

     Eb:  nucleon’s binding energy 
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Key differences here… 
  

T2K: 
  - Estimate E𝜈 via lepton kinematics 

  - Use a model for nuclear effects, 

        non-QE modes 

  - Constrain model parameters with ND 

        and external data  (plot at right) 

Worry points: 

  Does the model capture nuclear effects 

  correctly?  What about QE-like modes? 

 

NOvA: 
  - Measure “all” the energy 

  - Use a model to correct for relative balance of modes, missing energy, … 

  - Leave (most) model parameters with their a prioi uncertainties 

  - Do a direct ND-to-FD extrapolation, folding in those uncertainties. 

Worry points: 

  Is the model lacking significant avenues for missing energy? 

  Are the external uncertainties large enough? 



M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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M. Hartz 
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Pause for questions/discussion 
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LBL experiments: 
Future 
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  DUNE  
      Deep Underground 
      Neutrino Experiment 

A next generation experiment for 

neutrino science, nucleon decay, 

and supernova physics 

1300 km baseline 
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Long Baseline Neutrino Facility (LBNF) 

 DOE/Fermilab hosted project with international participation 

 Horn-focused beamline similar to NuMI beamline 

• 60 – 120 GeV protons from Fermilab’s Main Injector 

• 200 m decay pipe at -5.8° pitch, angled at South Dakota (SURF) 

• Initial power 1.1 MW, upgradable to 2.4 MW 
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Near Detector 
 DUNE will have a Near Detector 

• Constrain systematic uncertainties in oscillation measurements 

• Precisely measure initial fluxes of neutrinos in the beam 

• Measure numerous neutrino-nucleus scattering cross sections 

 Multiple designs under consideration 

• LAr TPC, high-pressure GAr TPC, fine-grained tracker, hybrid designs 
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Far Detector 
 40-kt (fiducial) LAr TPC 

 Installed as four 10-kt modules 

at 4850’ level of SURF 

Sanford Underground 

Research Facility (SURF) 

 First module will be a 

single phase LAr TPC 

 Modules installed in stages. 

Not necessarily identical 
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Key design features: 

   Very long baseline  →  no oscillation parameter ambiguities 

   Large detector and powerful beam  →  high event rate 

   Highly capable LAr TPC  →  excellent background rejection 

   Low energy threshold  →  rich underground physics program 

Time 
Projection 
Chamber 

(TPC) 
 

Anode Cathode 

Early……Late 

E field 

DUNE TPC: 

• 3.5 m drifts @ 175 kV (500 V/cm) 

• 3 ms e- lifetime 

• 5 mm wire pitch 

  

(ArgoNeuT) 5 cm 
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High-resolution detector 

• permits broadband neutrino beam 

• e-𝛾 shower separation via both 
event topology and early dE/dx 
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Simulated and reconstructed 
𝜈e CC event in DUNE 

e/𝛾 separation with R&D detector 
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Mass hierarchy sensitivity 

Observation of leptonic CP violation 
5𝜎 near 𝛿=𝜋/2 
3𝜎 for 65% of 𝛿 range 

Definitive hierarchy determination 
>5𝜎 regardless of other parameter choices 

Move quickly to 

potential discovery 

 

CPv sensitivity 

(after 7 years, staged deployment) 
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CPv sensitivity 

6 years 

10 years 4 years 

Mass hierarchy sensitivity 

1 year 

3 years 

6 years 

Sensitivity vs. time 
  

      →   Significant milestones throughout beam-physics program 

      →   A few examples below 
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𝛿CP resolution sin22𝜃13 resolution 

Precision PMNS 
  

      →   E.g.:  𝛿CP to ~10° ;    𝜃13, 𝜃23 to ~0.2° 

      →   A suite of oscillation parameter measurements in a single experiment 

(ultimate precision depends on 

parameter values themselves) 
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Supernova neutrinos 
 99% of energy released in a core-collapse supernova is 

carried away by neutrinos (cf.: 0.01% carried away by light) 

 Rich information embedded in neutrino signal: 

• Supernova physics: core-collapse mechanism, black hole 

formation, shock stall/revival, nucleosynthesis, cooling, … 

• Particle physics: flavor transformations in core, collective 

effects, mass hierarchy, sterile neutrinos, extra dimensions, … 
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Neutronization Accretion Cooling Argon target: 

  Unique sensitivity 

  to 𝜈e flux 
  

DUNE at 10 kpc: 

  ~3000 𝜈e events 

  over 10 seconds 
  

with 5%–10% energy 

resolution & sub-𝜇s 

time resolution 
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Supernova neutrinos S
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Diffuse supernova neutrino background 

Should be there.  Not yet observed.* 

 

DUNE:  Potential for DSNB discovery 

and ~20% rate measurement 
   

    (bkgnds still under study) 

* Present limit from Super-K: 

     K. Bays et al., Phys. Rev. D 85, 052007 (2012) 

DSNB predictions 

Solar 𝜈 

Atmospheric 𝜈 

 99% of energy released in a core-collapse supernova is 

carried away by neutrinos (cf.: 0.01% carried away by light) 

 Rich information embedded in neutrino signal: 

• Supernova physics: core-collapse mechanism, black hole 

formation, shock stall/revival, nucleosynthesis, cooling, … 

• Particle physics: flavor transformations in core, collective 

effects, mass hierarchy, sterile neutrinos, extra dimensions, … 
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Baryon number violation 
Processes with ΔB ≠ 0, including proton decay, are a general prediction 

of grand unified theories 

 An effective proton decay search requires (and DUNE has) 

• Large exposure: 

    40 kton, 20+ yr program 

• Low background rates: 

    Deep underground location 

• High signal efficiency: 

    Precision LAr TPC tracking  

LAr TPC technology particularly shines 

for complex p decay modes or modes with 

final state kaons, as favored by SUSY GUTs 

At right: 
  

   K±→𝜇→e decay sequence 
  

   Background-free signature in DUNE 
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Baryon number violation 
Processes with ΔB ≠ 0, including proton decay, are a general prediction 

of grand unified theories 

 An effective proton decay search requires (and DUNE has) 

• Large exposure: 

    40 kton, 20+ yr program 

• Low background rates: 

    Deep underground location 

• High signal efficiency: 

    Precision LAr TPC tracking  

LAr TPC technology particularly shines 

for complex p decay modes or modes with 

final state kaons, as favored by SUSY GUTs 

At right: 
  

   K±→𝜇→e decay sequence 
  

   Background-free signature in DUNE 

ICARUS collab., Adv. HEP, vol. 2013, 260820 (2013) 
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←  existing limits  → DUNE sensitivity 

(400 kt-yr) 
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Order of magnitude step in lifetime 

   → Significant model discrimination 

 

At right: 

   n-n oscillation →  intranuclear nn annihilation 

   Spherical spray of hadrons with E ≈ 2Mn and 

   net momentum ≲  pF  ~ 300 MeV 

simulation 

‾ ‾ 

50 cm 



DUNE Timeline 

2017: Far Site 
Construction Begins 

2018: ProtoDUNEs 
at CERN 

2021: Far Detector 
Installation Begins 

2024: Physics Data 
Begins (20 kt) 

2026: Neutrino 
Beam Available  40 kton + 2 MW beam to 

follow in subsequent years 
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Pause for questions/discussion 
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Many graphics (including this one) taken from 

M. Ishitsuka, HQL 2016 
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Option under discussion: T2HK → T2HKK 

      2nd Hyper-K tank in Korea (L=1100 km) 

⦁  Would improve CPv and mass hierarchy reach 
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Note: The experiments use a mix of assumptions for oscillation parameters, systematic uncertainties, and 
other relevant quantities.  Comparisons here should assume10%-ish uncertainties on stated sensitivities 
to absorb such effects. 

(10 yrs, staged deployment) T2HK DUNE 

CP violation 

 resolution 7 – 21 7 – 15 

3 coverage 78% 74% 

5 coverage 62% 54% 

MH sens. range 5 – 7 8 – 20+ 

octant 
sens. @ 0.45 5.8 5.1 

5 outside of… [0.46, 0.56] [0.45, 0.57] 

p decay 
(90% C.L.) 

p ̅K+ >2.8e34 yrs >3.6e34 yrs 

pe+0 >1.2e35 yrs >1.6e34 yrs 

supernova  
(10 kpc or relic) 

SNB  ̅e 130k evts 

SNB e 3k evts 

relic  ̅e 100 evts, 5 

relic e 30 evts, 6 

T2HK and DUNE: 
   Two highly capable and complementary experiments 

Core 3𝜈 measurements 

Sensitivities remarkably similar 

save for mass hierarchy. 

 

Proton decay, Supernova 𝜈 

Complementary channels 

 

Other physics 

Different wheelhouses, e.g.: 

 - DUNE is great for NSI 

 - Hyper-K is great for solar 𝜈 
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Pause for questions/discussion 
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Short-baseline 
accelerator experiments 
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LSND: 1993 – 1998 
   Scintillation/Cherenkov detector 

   exposed to stopped-𝜋 neutrino source 

 

Well-characterized flux (plot at left) 

arXiv:1204.5379 
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LSND: 1993 – 1998 
   Scintillation/Cherenkov detector 

   exposed to stopped-𝜋 neutrino source 

 

Well-characterized flux (plot at left) 
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LSND detector (Los Alamos) 



what are they turning into: 
  nutau, nue, or something else 

 

New physics possibility: “sterile” neutrinos 

Number of light active 

neutrinos from LEP data 
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Look near same L/E as LSND but at 10x higher energy and baseline 

   ⇒ Booster Neutrino Beam built for this 
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90 



Several measurements 

on same figure 

(some null, some not) 
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LSND, MiniBooNE, reactor, 71Ga anomalies 

• What’s going on? 
  - Sterile neutrinos?  (Need multiple sterile states 
      to accommodate all of today’s data.) 
  - Something else new? 
  - A series of systematics issues? 

  

• Many null results in past decade+ (KARMEN, Bugey, 
Super-K, MINOS, ICARUS, IceCube, Planck), 
but situation lingers 

 
Past reactor data: 6% deficit relative to expectation 

MiniBooNE low-energy excess 

Future experiment(s) need a 

viable path toward… 

   …large exposures 
   …minimized systematic errors 
   …in-detector L, E signatures 
   …unambiguous sensitivity 

Attempts that stop short of this 
will only make things murkier. 
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bump 

bump 

bump 

RENO 

                     Double Chooz 

Daya Bay 

Reactor flux uncertainties already 
known to be underestimated? 
 

4 – 6 MeV excess seen in all three 
recent reactor flux measurements 
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ICARUS T600 

LAr TPC 
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Fermilab SBN program Below: MicroBooNE detector 

and “first light” neutrino event 

• MicroBooNE + ICARUS + SBND 

• A mix of R&D and physics goals 

 

Sensitivity shown below has caveats… 
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Pause for questions/discussion 
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Slide from P. Barbeau, DPF 2017 for COHERENT collab. 
99 Accelerator Neutrinos @ INSS 2017 



Slide from J. Spitz, DPF 2017 
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Slide from M. Shaevitz, P5 meeting, 2013 
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Pause for questions/discussion 
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Grab bag 

Ryan Patterson 103 Accelerator Neutrinos @ INSS 2017 



Search for Sterile Neutrinos 

Mixing with Muon Neutrinos 

in MINOS 

 
P. Adamson et al. (MINOS),  

Phys. Rev. Lett. 117, 151803 

(2016) 

 

 

Sterile neutrino mixing can 

manifest as a decrease in total 

active flux, which in turn can be 

measured via NC interactions. 

 

At the highest m2 values, the ND 

sees oscillations, too, so a simple 

ND-to-FD extrapolation has 

limitations. 

Ryan Patterson 104 Accelerator Neutrinos @ INSS 2017 



Limits on Active to Sterile Neutrino 

Oscillations from Disappearance Searches 

in the MINOS, Daya Bay, and Bugey-3 

Experiments 

 

P. Adamson et al. 

(Daya Bay, MINOS) 

 

Phys. Rev. Lett. 117, 151801 (2016) 

 

 

 

Here, three combined results in a 3+1 

model to set a limit in the LSND-like 

parameter space. 

 

(Need a model of some kind to go 

from disappearance to appearance 

sterile neutrino constraints) 

 

 



NOvA (2017) and Super-K (2015) limits 

in part of the 3+1 parameter space… 
NOvA, arXiv:1706.0459 
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Large extra dimensions 
 

(figure from MINOS, 

Phys. Rev. D 94, 111101(R)  

(2016) 
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 Non-standard interactions 

   Beam and atmospheric neutrinos 

   passing through matter provide 

   access to non- standard couplings. 

         (e.g., plot at right) 

 

 Dark matter 

   Astrophysical (e.g., annihilation 

   in the sun; at NOvA, look for 

   up-going neutrinos) and beam- 

   induced light dark matter (e.g., 

   qq → V* → 𝜒𝜒 at target) 

 

 And more… 

   Lorentz violation, effective CPTv, non-unitarity, neutrino, 

   tridents (Z' and muon g–2) 



“Neutrino factory” 

 

Accelerator R&D 

required. 

 

Well-characterized 

spectrum and rate 

(muon decay) 
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“Beta beam” 
 Accelerator R&D required.  Well-characterized spectrum and rate (beta decay).  

 Flavor-pure.  (Was discussed a lot when 𝜃13 could still be very small. 

 Could conduct 𝜈e→𝜈𝜇 search with no intrinsic 𝜈𝜇 background.) 
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