Lies, Damn Lies, and your Analysis: Practical Statistics for Neutrino Physics

Alex Himmel

International Neutrino Summer School
Fermilab
August 11th, 2017 Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data. ${ }^{[1][2]}$

- A collection of methods to extract meaning from data.
- There are many, many methods.
- The question you need to answer - is the method I'm using appropriate to my situation?
- Make sure you're clear about what you did, so others can interpret your results.
- You are making an argument using data.
- The answers are never simply "yes" or "no"
- There is always a degree of uncertainty or level of agreement.

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads $=0$, tails $=1$
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

Central Limit Theorem

- The sum of a sufficiently large number of independent random variables.
- It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
- Clearly not normally distributed.
- However, if we look at the distribution of the means:

- This is why, under most circumstances, we treat errors as "Gaussian"...because most of the time it works.
- When doesn't it work?
- Mostly when the stats are too low, plus a few other edge cases.

$$
\mathcal{N}(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

$$
\mathcal{N}(x \mid \mu, \sigma) d x=\begin{gathered}
\text { probability that } x \text { is } \\
\text { between } a \text { and } b
\end{gathered}
$$

$\int_{a}^{b} \mathcal{N}(x \mid \mu, \sigma) d x=\begin{gathered}\text { probability that } x \text { is } \\ \text { between } a \text { and } b\end{gathered}$

How to Ask a Statistical Question

- The term for this is a "hypothesis test."
- H_{0} : Null hypothesis
- The specific case, such as A and B are the same
- H_{1} : Alternative hypothesis
- The alternative to the null - A and B are different
- Significance level
- How high a rate of false positives (rejecting the null, even if it is true) can you tolerate.
$-\alpha=0.05$ is common, but often not sufficient for physics.

Are two means the same?

$$
\mu_{1}=2.5 \pm 0.1 \quad \mu_{2}=3.1 \pm 0.3
$$

- H_{0} : The difference between the means is 0

$$
-\mu_{2}-\mu_{1}=0
$$

- H_{1} : The means are different
- $\mu_{2}-\mu_{1} \neq 0$
- I can tolerate a 5% chance of saying they are different, even if they really are the same.
- Now, let's do the test.
$X=\mu_{2}-\mu_{1}=0.6 \rrbracket$ Are these different

$$
\sigma_{\mu_{2}-\mu_{1}}=\sqrt{\sigma_{\mu_{1}}^{2}+\sigma_{\mu_{2}}^{2}}=0.32
$$

at $p=0.05$?

How often do we get 0.6 ar mare extreme assuming

$$
X \sim N(0,0.32)^{?}
$$

$$
\begin{aligned}
X \rightarrow Z & =\frac{X-\mu}{\sigma}=\frac{0.6-0}{0.32}=1.88 \\
Z & \sim N(0,1)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{-z} N(x, 1) d x+\int_{z}^{\infty} N(x, y) d x \stackrel{2}{<} p \\
& 1-\underbrace{z}_{-z} N(x, 1) d x{ }^{z}<p \\
& \operatorname{Erf}(x / \sqrt{2}) \\
& 0.06>0.65
\end{aligned}
$$

"Fill to reject H_{0} "

$$
p=1-\int_{-Z}^{Z} \mathcal{N}(x, 1) d x
$$

- This integral doesn't have an analytical solution, but we need it all the time, so it's results are readily available as the "error function"

```
// Z-score (sigmas) -> p-value
root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081
```


A Little Vocabulary

- Z is our test statistic
- A single number we calculate as a "summary" of our data.
- You want to know how the test statistic is supposed to be distributed under the null hypothesis.
- You need to know the distribution to calculate a p-value.
- Generally, there are assumptions that must be met for this to be true.
- If the conditions are not met, or there is no simple test statistic, all is not lost.
- There are "non-parametric" techniques.

Is there signal above the background?

- Let's say we're members of a neutrino experiment called SOvA
- The Statistical Off-axis ve Appearance Experiment
- Thanks to our powerful off-axis design we expect only 1 background event.
- And since this is SOvA we have no systematic errors!
- We open the box and observe 6 events.
- Did we observe v_{e} appearance?
- Let's translate into a hypothesis test:
- H_{0} : Our observation is consistent with the background.
- X = B
- H_{1} : There is a signal above our background estimate.
- $\mathrm{X}>\mathrm{B}$
- We are making an important claim, so we require $\alpha=0.0027$ (3σ)
// p-value -> sigmas
root [6] TMath::NormQuantile(1 - 0.0027/2)
(Double_t)3.0
- How is this different from the mean test?
- The numbers involved are small.
- This test is 1 -sided instead of 2 -sided
- The distribution is not Gaussian, it is Poisson.
- How do we know it's Poisson?
- This distribution describes the number of independent events (neutrinos in the FD)
- occurring within a fixed time interval (periods 1\&2).
- This almost always describes neutrino physics data.
- But, if you have many events, then the Poisson just becomes...
- First - what is our test statistic?
- Just the number of observed events.
- We know, under the null hypothesis, how that should be distributed - Poisson, rate 1
- We need to calculate a p-value to compare to our α.
- To do that, we again need to integrate a distribution.

$$
p=\sum_{X}^{\infty} \mathcal{P}(x, 1)
$$

- First - what is our test statistic?
- Just the number of observed events.
- We know, under the null hypothesis, how that should be distributed - Poisson, rate 1
- We need to calculate a p-value to compare to our α.
- To do that, we again need to integrate a distribution.

- Again, let's take advantage of built-in functions which already have the integral of the Poisson distribution.

```
root [14] 1 - ROOT::Math::poisson_cdf(5,1)
(double) 0.00059418
```

- $p(0.000594)<\alpha(0.0027)$
- We reject the null hypothesis.
- We have evidence of something other than background at the 3б-level.

Data/MC Agreement

- Does the model (red) describe the data (black)?

Data/MC Agreement

- Is the data consistent with having been drawn from the model, given its uncertainties?

Data/MC Agreement

- Hypothesis test:
- H_{0} : The data was drawn from the model in red.
- H_{1} : The data is not consistent with the model.
$-\alpha=0.05$

$$
\begin{aligned}
& T= \sum_{i}^{N} \frac{\left(\sigma_{i}-E_{i}\right)^{2}}{\sigma^{2}} \rightarrow \sum^{N} z^{2} \sim \lambda^{2}(N) \\
& \alpha_{i} \sim N\left(\epsilon_{i}, \sigma\right) \\
& \lambda^{\prime-\mu} \mu^{\mu} \rightarrow z
\end{aligned}
$$

- This means that, assuming the null is true, we know what T's distribution should be: the chisquared.

$$
T=\sum^{N} Z^{2} \sim \chi^{2}(N)
$$

- This means that we can calculate T for our histograms, and then look up that value in this distribution to get a p value.
- Note that χ^{2} depends on the number of "degrees of freedom"
- For a histogram, Ndof = number of bins.


```
def CalcChi2(hmc, hdata):
    chi2 = 0
    for i in range(1, hmc.GetNbinsX()+1):
        ei = hmc.GetBinContent(i)
        oi = hdata.GetBinContent(i)
        sigma = sqrt(ei)
        chi2 += (ei - oi)**2 / sigma**2
    return chi2
chi2 = CalcChi2(hpred, hrand)
Ndof = hpred.GetNbinsX()
p = TMath.Prob(chi2, Ndof)
```

- With p of 0.08 , we fail to reject the H_{0}.


```
def CalcChi2(hmc, hdata):
    chi2 = 0
    for i in range(1, hmc.GetNbinsX()+1):
        ei = hmc.GetBinContent(i)
        oi = hdata.GetBinContent(i)
        sigma = sqrt(ei)
        chi2 += (ei - oi)**2 / sigma**2
    return chi2
chi2 = CalcChi2(hpred, hrand)
Ndof = hpred.GetNbinsX()
p = TMath.Prob(chi2, Ndof)
```

- Statistical tests are not a substitute for looking at the data!
- The results from a test are piece of the argument - they are not an answer themselves.

https://xkcd.com/882/
 LINK BETWEEN JELLY BEANS AND ACNE ($P>0.05$).

THAT SETTLES THAT. I HEAR IT'S ONLY
A CERTAIN COLOR
THAT CAUSES IT. SCIENTISTS!

WE FOUNDNO LINK BETWEEN
SALMON JEMY SALMON JELYY
BEPNS PND ACNE $(P>0.05)$

 $(P>0.05)$.

WE FOUNONO
LINK BETWEN LERK BETWEEN
TURQUOISE JEIY TURQUOISE JELY
BEANS AND ANNE BEANS AND
$(P>0.05)$
$\xrightarrow{ }$
WE FOUNONO
LINK BETWEEN LINK BETWEEN
CYAN JEIY CYAN JELY
BEANS AND AGNE ($P>0.05$)

WE FOUNONO
LNK BEWEEN LINK BETWEEN
BACK JEUY BEANS AND AONE ($P>0.05$).

- Also - be warry of the "look elsewhere" effect.
- More often a problem for us when looking at data-MC comparisons.
WE FONNONO
LINK BETWEEN
BUE JEUY
BEPNS ANDAGE
(P>O.O5).
W

WE FOUND A
LINK BEWEEN
GREN JELY
BEANS ANDANE
(P < O.O5).
WHOA!

WE FOUNDNO
LINK BEWEEN
PAPCH JEUY LINK BETWEEN
PEACH JELYY
BEANS PND ANE BEANS PND AONE
$(P>0.05)$. B)
WE FOUNONO
LINK BETWEEN
ORAGE JEUY
BEANS ANDAONE
$(P>0.05)$.

Real Life Examples

MINOS 2008

Anomalous FD Distributions

- Track End R has $\sim 3.3 \sigma$ discrepancy at 4.1 m (26 events expected 9 events seen discrepancy of (26-9) $/ \sqrt{26}=3.3 \sigma$)!
\triangleright Essentially all the missing events are in a single Track End R bin.
- Vertex R distribution also shows discrepancy in region $\mathrm{r}>2 \mathrm{~m}$.

Real Life Examples

T2K 2011

Vertex distribution of v_{e} candidate events

These events are clustered at large R

Event outside FV
\rightarrow Perform several checks. for example

* Check distribution of events outside FV \rightarrow no indication of BG contamination
* Check distribution of OD events \rightarrow no indication of BG contamination
* K.S. test on the R^{2} distribution yields a p-value of 0.03

Parameter Estimation

- Up until now, we've been asking yes-or-no questions.
- Often, what we want is to measure a value - this is parameter estimation.
- In addition to data, this requires a model.
- The parameters are the values which describe that model.
- For example, a line is described by it's slope and y-intercept.

- So, how do we estimate parameters given a model and data?
- We use a method called maximum likelihood
- The key to which is the likelihood function:

- The probability of your data assuming these parameters are true.

- Let's extend a familiar example.
- Now, we have a model, with a single parameter θ.
- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.
- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.

$$
\mathcal{L}=P(\vec{O} \mid \theta)=\prod^{N} e^{\left(O_{i}-E_{i}(\theta)\right)^{2} / \sigma^{2}}
$$

- In practice, instead of maximizing likelihood, we minimize $-2 \ln L$
- Because addition is easier than multiplication.

$$
-2 \ln \mathcal{L}(\theta)=\sum^{N} \frac{\left(O_{i}-E_{i}(\theta)\right)^{2}}{\sigma^{2}}
$$

- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.

$$
\mathcal{L}=P(\vec{O} \mid \theta)=\prod^{N} e^{\left(O_{i}-E_{i}(\theta)\right)^{2} / \sigma^{2}}
$$

- In practice, instead of maximizing likelihood, we minimize $-2 \ln L$
- Because addition is easier than multiplication.

$$
-2 \ln \mathcal{L}(\theta)=\sum^{N} \frac{\left(O_{i}-E_{i}(\theta)\right)^{2}}{\sigma^{2}}=\chi^{2}
$$

- We can then calculate χ^{2} for each possible value of θ.
- Both of these are pretty bad.

- We can then calculate χ^{2} for each possible value of θ.
- But 30 is pretty good.

- We find the minimum χ^{2} (maximum L) when $\theta=1.054$
- This is our maximum likelihood estimate, or "best fit"

- We can also ask, "how good a fit is this?"
- Is this a reasonable model of this data?
- That is just the hypothesis test we did before.
- But - you need to subtract 1 for each free parameter in the fit ${ }_{43}$

- An even better question - what is our uncertainty on our estimate?

Building Confidence Intervals

- Here we'll discuss "frequentist" confidence intervals, because that's what you will most often see.

Definition of an Confidence Interval at level α :

If we repeat the experiment numerous times, α of the intervals we draw will cover the true value.

- This isn't really what you wanted to know, but it has been rigorously defined.
- There are many ways to construct CI's depending on the circumstance.

The Truth

- If you problem has all Gaussian errors, then the distribution of the estimator of the parameter is also Gaussian.
- Presented without proof, since that's what the PDG does, too.
- This is the case for our example, too.

- We will use the likelihood distribution to draw the CI.
- We allow inside our CI any values of θ with small values $\Delta \chi^{2}$ relative to the best fit, and we exclude values of θ with larger values of $\Delta \chi^{2}$.

- The question you should be asking:
- How do I know what "up value" to choose to know which θ 's are in and which are out?
- Here is where we take advantage of everything being Gaussian.
- As with the hypothesis tests, we know what distribution $\Delta \chi^{2}$ should have, so we can look it up.
- This table comes from the PDG:

Table 37.2: Values of $\Delta \chi^{2}$ or $2 \Delta \ln L$ corresponding to a coverage probability $1-\alpha$ in the large data sample limit, for joint estimation of m parameters.

The level of the Clyou want to draw.	$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$	The number of dimensions.
	[68.27	1.00	2.30	3.53	
	90.	2.71	4.61	6.25	
	95.	3.84	5.99	7.82	
] 95.45	4.00	6.18	8.03	
	99.	6.63	9.21	11.34	
	¢99.73	9.00	11.83	14.16	

- This 68% (e.g. 1σ) C.L. is what we generally report as an error band.
- So, in Stats-ese: ML Estimate 1.056 with 68% CL 1.022-1.090
- In Physic-ese: 1.056 ± 0.034

A little more realism

- Choice of likelihood function
- It's rare in neutrino physics that we have so much data that χ^{2} is valid.
- Instead, we use an L which is based on bins with Poisson errors.

$$
\begin{gathered}
-2 \ln \mathcal{L}(\theta)=\sum^{N} \frac{\left(O_{i}-E_{i}(\theta)\right)^{2}}{\sigma^{2}}=\chi^{2} \\
-2 \ln \lambda(\boldsymbol{\theta})=2 \sum_{i=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \ln \frac{n_{i}}{\mu_{i}(\boldsymbol{\theta})}\right], \\
\begin{array}{l}
\text { If you have bins with < 30 } \\
\text { entries, you probably need this. } \\
\text { Just look it up in the PDG. }
\end{array}
\end{gathered}
$$

- More variables?
- If you have 2 variables, and you want to show 2 variables, then it's straightforward.
- Just pick the right up value, and points below it are in.

$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

- More variables?
- If you have 2 variables, and you want to show 2 variables, then it's straightforward.
- Just pick the right up value, and points below it are in.

$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

- More variables?
- If you have 2 variables, and you want to show 2 variables, then it's straightforward.
- Just pick the right up value, and points below it are in.

$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

- Nuisance parameters
- Often your likelihood depends on more parameters than you want to present.
- Extra parameters can be physics or systematic uncertainties.
- For example, in the NOvA joint fit we do: $\left(\Delta m^{2}, \theta_{23}, \theta_{13}, \delta\right.$, systematic errors $) \rightarrow\left(\theta_{23}, \delta\right)$
- Two different approaches:
- Profiling
- Marginalizing

- Profiling

- Take the best fit in all parameters you are not showing at each point you do show.
- More common, works under certain assumptions.

- Marginalizing
- Integrate up all the values you are not showing.
- Shows up more in Bayesian analyses.

- What if you can't trust the values from the PDG?
- They don't have the right coverage:
a 90% C.L. is actually an 85% C.L.
- Commonly happens when statistics are low and the problem has a physical boundary.
- Happens a lot in neutrino physics since $\mathbf{0}<\sin ^{2} \mathbf{2} \boldsymbol{\theta}<\mathbf{1}$

Feldman-Cousins

- The solution is a technique called Feldman-Cousins
- From a paper called "A Unified Approach to the Classical Statistical Analysis of Small Signals"
- by Gary Feldman and Bob Cousins
- Phys. Rev. D57 (1998) 3873
- Let's walk through an example.

- A real-life example from the MINOS anti- v_{μ} disappearance analysis circa 2010.

Frequentist

- The true value of a measurement is an unknown constant.
- Report the probability of experimental outcomes, given a value of that constant.
- Use that to construct a confidence interval which will contain the true value in α fraction of experiments.

Bayesian

- The true value of a measurement is a random variable.
- Before the measurement, have a "prior" PDF of that variable.
- After the measurement, update to a "posterior" PDF using the data collected.

Frequentist

- Apply solid mathematical rigor to answer a question that nobody cares about.

Bayesian

- Answers the question everyone is really interested in using assumptions no one believes.

Frequentist

Bayesian

- In the real world:
- This is from the latest T2K PRD, arXiv:1707.01048

Conclusion

- I've tried to show the statistical underpinnings of some of the most common statistical techniques we use.
- But there are many, many more possible techniques.
- There are numerous alternative ways to do everything I have presented here.
- Some general advice: use the simplest method that is correct, but no simpler.
- If you use a technique that requires assumptions that you cannot meet, your results will be questioned.
- But, if you use a more complicated technique, be prepared to explain how it works and why you chose it.
- I highly recommend the PDG statistics section as a place to find statistical techniques which are "commonly accepted" in physics.

Backups

$$
\begin{gathered}
\mu_{1}=2.5 \pm 0.1 \quad \mu_{2}=3.1 \pm 0.3 \\
X=\mu_{2}-\mu_{1}=0.6
\end{gathered}
$$

- We know, from the central limit theorem, that means are normally distributed.
- The difference between means is, too.
- The standard deviation of that difference is:

$$
\sigma_{\mu_{2}-\mu_{1}}=\sqrt{\sigma_{\mu_{2}}^{2}+\sigma_{\mu_{1}}^{2}}=0.32
$$

- Now the question is: Is 0.6 significantly different from 0 if it comes from a normal distribution with $\sigma=0.32$?
- What we are asking is: how likely is it that we would get our result, or something more extreme assuming the null hypothesis is true?
- This is the definition of p-value, which we compare to our α.
- "different from" means we are making a "two-sided" test:
- If we set an $\alpha=0.05$, we want to know if our value falls into the central 1- α or 95% of the distribution.

- To start, we calculate a "Z-score," which effectively converts from our specific normal distribution to the canonical $\mathcal{N}(0,1)$:

$$
Z=\frac{X-\mu_{0}}{\sigma}=\frac{0.6-0}{0.32}=1.88
$$

This is what we mean when we say " 1.88 б"

- But, what does that Z-score mean?
- In other words, what is it's p-value we can compare to α ?
- What fraction of values in the distribution are more extreme than ours?

$$
p=\int_{-\infty}^{-Z} \mathcal{N}(x, 1) d x+\int_{Z}^{\infty} \mathcal{N}(x, 1) d x
$$

- But infinity is hard, so we can take advantage of the fact that probabilities all add up to 1 to do the inverse:

$$
p=1-\int_{-Z}^{Z} \mathcal{N}(x, 1) d x
$$

$$
p=1-\int_{-Z}^{Z} \mathcal{N}(x, 1) d x
$$

- This integral doesn't have an analytical solution, but we need it all the time, so it's results are readily available as the "error function"

```
// Z-score (sigmas) -> p-value
root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
    (Double_t) 0.0601081
```

$$
\mu_{1}=2.5 \pm 0.1 \quad \mu_{2}=3.1 \pm 0.3
$$

- With $\boldsymbol{p}=\mathbf{0 . 0 6}$, we have failed to reject the null hypothesis at $\boldsymbol{\alpha}=0.05$.
- "These two means are consistent at the 95\% level."
- Or, we might say:
- "These means differ by 1.88σ " or
- "They are consistent at the 94\% level"
- Now, we need to choose a test statistic.
- There are several choices for this problem.
- Which one is the right one depends on the circumstance.
- A good first guess: try a chisquare $\left(\chi^{2}\right)$ test.
- This is what the test statistic looks like:

$$
T=\sum^{N} \frac{\left(O_{i}-E_{i}\right)^{2}}{\sigma^{2}}
$$

- Squared difference between the histograms, normalized by the expected uncertainty.
- Why this test statistic?
- Let's see how it behaves assuming H_{0}.
- The data is drawn randomly from the model, so each bin, O_{i}, should be drawn randomly from the model:

$$
O_{i} \sim \mathcal{N}\left(E_{i}, \sigma\right)
$$

- Given that, the argument in the sum of the chisquare should look familiar - it is a Z-score, squared.

$$
T=\sum^{N} \frac{\left(O_{i}-E_{i}\right)^{2}}{\sigma^{2}} \quad Z=\frac{X-\mu_{0}}{\sigma}
$$

