Lies, Damn Lies, and your Analysis: Practical Statistics for Neutrino Physics

Alex Himmel

International Neutrino Summer School Fermilab August 11th, 2017

Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data.^{[1][2]}

- A collection of methods to extract meaning from data.
 - There are many, many methods.
 - The question you need to answer is the method I'm using appropriate to my situation?
 - Make sure you're clear about what you did, so others can interpret your results.
- You are making an argument using data.
- The answers are never simply "yes" or "no"

- There is always a degree of uncertainty or level of agreement.

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- The sum of a sufficiently large number of **independent random variables**.
 - It does not matter what distribution the underlying random variables come from.
- Example: coin flips. Heads = 0, tails = 1
 - Clearly not normally distributed.
- However, if we look at the distribution of the means:

- This is why, under most circumstances, we treat errors as "Gaussian"...because most of the time it works.
- When doesn't it work?
 - Mostly when the stats are too low, plus a few other edge cases.

$$\mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

rb probability that x is $\mathcal{N}(x|\mu,\sigma)dx = 1$ between *a* and *b* \boldsymbol{a} 0.16 $r\sigma$ other notations $\mathcal{N}(x|\mu,\sigma)dx = 0.683$ 0.14 σ 0.12 or 0.10 G(x) 0.08 or f(x) or 68.3% 0.06 within $\pm 1\sigma$ 0.04 dP/dx 0.02 0.00 12 20 2 8 14 18 10 16 0 4 6 х

 $\int_{a}^{b} \mathcal{N}(x|\mu,\sigma) dx = \frac{\text{probability that } x \text{ is between } a \text{ and } b}{\text{between } a \text{ and } b}$ 0.020 $\sim \infty$ 0.018 $\mathcal{N}(x|\mu,\sigma)dx = 1$ 0.016 ∞ 0.014 ().012 ().012 ().010 ().008 0.006 0.004 0.002 0.000 120 140 160 180 200 220 240 260 height measurement h (m)

How to Ask a Statistical Question

- The term for this is a "hypothesis test."
- *H*₀: Null hypothesis
 - The specific case, such as A and B are the same
- *H*₁: Alternative hypothesis
 - The alternative to the null A and B are different
- Significance level
 - How high a rate of false positives (rejecting the null, even if it is true) can you tolerate.
 - $-\alpha = 0.05$ is common, but often not sufficient for physics.

Are two means the same?

$$\mu_1 = 2.5 \pm 0.1 \quad \mu_2 = 3.1 \pm 0.3$$

- H_0 : The difference between the means is 0 - $\mu_2 - \mu_1 = 0$
- H_1 : The means are different - $\mu_2 - \mu_1 \neq 0$
- I can tolerate a 5% chance of saying they are different, even if they really are the same.
- Now, let's do the test.

 $\chi = M_2 - M_1 = 0.6 \qquad \text{Are these different}$ $Q_{m_2 - M_1} = \sqrt{Q_{m_1}^2 + G_{m_2}^2} = 0.32 \qquad \text{Are these different}$ How often do we get 0.6 as more extreme assumily $\int_{-\infty}^{-t} N(x,1) dx + \int_{-\infty}^{\infty} N(x,1) dx \stackrel{?}{<} p$ $X \sim A / (0, 0.32)^{?}$ $\left|-\int_{N(x,1)dx}^{z} \langle P \rangle$ -0.6 6.6 $X \rightarrow Z = \frac{X - \mu}{0} = \frac{0.6 - 0}{0.32} = 1.88$ Erf(X/JZ) ().06 70.65Z~N(0,1) "Fail to reject Ha"

QUARTET

$$p = 1 - \int_{-Z}^{Z} \mathcal{N}(x, 1) dx$$

 This integral doesn't have an analytical solution, but we need it all the time, so it's results are readily available as the "error function"

// Z-score (sigmas) -> p-value
root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081

A Little Vocabulary

• *Z* is our **test statistic**

A single number we calculate as a "summary" of our data.

• You want to know how the test statistic is supposed to be distributed under the null hypothesis.

You need to know the distribution to calculate a *p*-value.

- Generally, there are **assumptions that must be met** for this to be true.
- If the conditions are not met, or there is no simple test statistic, all is not lost.

There are "non-parametric" techniques.

Is there signal above the background?

- Let's say we're members of a neutrino experiment called SOvA
 - The Statistical Off-axis ve Appearance Experiment
- Thanks to our powerful off-axis design we expect only 1 background event.
 - And since this is SOvA we have no systematic errors!
- We open the box and **observe 6 events**.
- Did we observe v_e appearance?

- Let's translate into a hypothesis test:
- *H*₀: Our observation is consistent with the background.
 - X = B
- *H*₁: There is a signal above our background estimate.
 - -X > B
- We are making an important claim, so we require $\alpha = 0.0027 (3 \sigma)$

// p-value -> sigmas
root [6] TMath::NormQuantile(1 - 0.0027/2)
(Double_t)3.0

- How is this different from the mean test?
 - The numbers involved are *small*.
 - This test is 1-sided instead of 2-sided
 - The distribution is not Gaussian, it is Poisson.
- How do we know it's Poisson?
 - This distribution describes the number of independent events (neutrinos in the FD)
 - occurring within a **fixed time interval** (periods 1&2).
 - This almost always describes neutrino physics data.
- But, if you have many events, then the Poisson just becomes...

- First what is our test statistic?
 - Just the number of observed events.
 - We know, under the null hypothesis, how that should be distributed – Poisson, rate 1
- We need to calculate a *p*-value to compare to our α .
 - To do that, we again need to integrate a distribution.

- First what is our test statistic?
 - Just the number of observed events.
 - We know, under the null hypothesis, how that should be distributed – Poisson, rate 1
- We need to calculate a *p*-value to compare to our α .

To do that, we again need to integrate a distribution.

• Again, let's take advantage of built-in functions which already have the integral of the Poisson distribution.

root [14] 1 - ROOT::Math::poisson_cdf(5,1)
(double) 0.00059418

- $p(0.000594) < \alpha(0.0027)$
 - We reject the null hypothesis.
 - We have evidence of something other than background at the 3σ -level.

Data/MC Agreement

• Does the model (red) describe the data (black)?

Data/MC Agreement

• Is the data consistent with having been drawn from the model, given its uncertainties?

Data/MC Agreement

• Hypothesis test:

- H_0 : The data was drawn from the model in red.

- H_1 : The data is not consistent with the model.

 $- \alpha = 0.05$

 $T = \sum_{i=1}^{N} \frac{(o_i - E_i)^2}{\sigma^2} \rightarrow \sum_{i=1}^{N} \frac{N}{2} Z^2 \sim \mathcal{N}(N)$

 $\begin{array}{c}
0_{i} \sim \mathcal{N}(\mathcal{E}_{i}, \sigma) \\
\swarrow & \swarrow \\
\chi & \swarrow \\
\chi & \swarrow \\
\chi & \neg \\
\overline{\sigma} & \overline{\gamma} & \overline{\gamma} \\
\overline{\gamma} & \overline{\gamma} & \overline{\gamma} & \overline{\gamma} \\
\overline{\gamma} & \overline{\gamma} & \overline{\gamma} \\
\overline{\gamma} & \overline{\gamma} & \overline{\gamma} & \overline{\gamma} & \overline{\gamma} \\
\overline{\gamma} & \overline{\gamma} & \overline{\gamma} \\
\overline{\gamma} & \overline{\gamma} & \overline{\gamma}$

• This means that, assuming the null is true, we know what *T*'s distribution should be: the chisquared.

- This means that we can calculate *T* for our histograms, and then look up that value in this distribution to get a *p*-value.
 - Note that χ^2 depends on the number of "degrees of freedom"
 - For a histogram, Ndof = number of bins.

• With *p* of 0.08, we fail to reject the H_0 .

- Statistical tests are not a substitute for looking at the data!
- The results from a test are piece of the argument they are not an answer themselves.

Also – be warry of the "look elsewhere" effect.

 More often a problem for us when looking at data-MC comparisons.

Real Life Examples

MINOS 2008

Track End R has ~3.3σ discrepancy at 4.1m (26 events expected 9 events seen discrepancy of (26-9)/√26=3.3σ)!

▷ Essentially all the missing events are in a single Track End R bin.

▶ Vertex R distribution also shows discrepancy in region r>2m.

Real Life Examples

T2K 2011 Vertex distribution of v_e candidate events 2000 2000 beam direction ¹ Vertex Y (cm) 1000 Vertex Z (cm) 0 -1000 -1000 -2000 └─ -2000 -2000 3000 1000 2000 0 -10001000 2000 0 Vertex R² (cm²) Vertex X (cm) x 10 C Event outside FV These events are clustered at large R \rightarrow Perform several checks. for example * Check distribution of events outside FV \rightarrow no indication of BG contamination * Check distribution of OD events → no indication of BG contamination

* K.S. test on the R² distribution yields a p-value of 0.03

Parameter Estimation

- Up until now, we've been asking yes-or-no questions.
- Often, what we want is to measure a value this is parameter estimation.
 - In addition to data, this requires a model.
 - The parameters are the values which describe that model.
 - For example, a line is described by it's slope and y-intercept.

- So, how do we estimate parameters given a model and data?
- We use a method called **maximum likelihood**

The key to which is the likelihood function:

$$\mathcal{L}(\vec{\theta}) = P(\text{your data}|\vec{\theta})$$

The probability of your data assuming these parameters are true.

- Let's extend a familiar example.
- Now, we have a model, with a single parameter θ .

- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.

$$\mathcal{L} = P(\vec{O}|\theta) = \prod_{i=1}^{N} e^{(O_i - E_i(\theta))^2 / \sigma^2}$$
P of each bin, assuming each is a normal distribution.

- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.

$$\mathcal{L} = P(\vec{O}|\theta) = \prod_{i=1}^{N} e^{(O_i - E_i(\theta))^2 / \sigma^2}$$
P of each bin, assuming each is a normal distribution.

- In practice, instead of maximizing likelihood, we minimize -2 ln L
 - Because addition is easier than multiplication.

$$-2\ln \mathcal{L}(\theta) = \sum_{i=1}^{N} \frac{(O_i - E_i(\theta))^2}{\sigma^2}$$

- Now, we need a likelihood function.
- To start, let's assume Gaussian errors.

$$\mathcal{L} = P(\vec{O}|\theta) = \prod_{i=1}^{N} e^{(O_i - E_i(\theta))^2 / \sigma^2}$$
P of each bin, assuming each is a normal distribution.

- In practice, instead of maximizing likelihood, we minimize -2 ln L
 - Because addition is easier than multiplication.

$$-2\ln \mathcal{L}(\theta) = \sum_{i=1}^{N} \frac{(O_i - E_i(\theta))^2}{\sigma^2} = \chi^2$$

- We can then calculate χ^2 for each possible value of θ .
 - Both of these are pretty bad.

- We can then calculate χ^2 for each possible value of θ .
 - But 30 is pretty good.

- We find the minimum χ^2 (maximum *L*) when $\theta = 1.054$
- This is our maximum likelihood estimate, or "best fit"

- We can also ask, "how good a fit is this?" – Is this a reasonable model of this data?
- That is just the hypothesis test we did before.
 - But you need to subtract 1 for each free parameter in the fit

An even better question – what is our uncertainty on our estimate?

Building Confidence Intervals

 Here we'll discuss "frequentist" confidence intervals, because that's what you will most often see.

Definition of an Confidence Interval at level α :

If we repeat the experiment numerous times, α of the intervals we draw will cover the true value.

- This isn't really what you wanted to know, but it has been rigorously defined.
- There are many ways to construct CI's depending on the circumstance.

- If you problem has all Gaussian errors, then the distribution of the estimator of the parameter is *also* Gaussian.
 - Presented without proof, since that's what the PDG does, too.
 - This is the case for our example, too.

- We will use the likelihood distribution to draw the CI.
- We allow inside our CI any values of θ with small values $\Delta \chi^2$ relative to the best fit, and we exclude values of θ with larger values of $\Delta \chi^2$.

- The question you should be asking:
- How do I know what "up value" to choose to know which θ's are in and which are out?

- Here is where we take advantage of everything being Gaussian.
- As with the hypothesis tests, we know what distribution $\Delta \chi^2$ should have, so we can look it up.
- This table comes from the PDG:

Table 37.2: Values of $\Delta \chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1 - \alpha$ in the large data sample limit, for joint estimation of *m* parameters.

	$(1 - \alpha)$ (%)	m = 1	m = 2	m = 3	
The level of the CI you want to draw.	68.27	1.00	2.30	3.53	
	90.	2.71	4.61	6.25	The number
	95.	3.84	5.99	7.82	of dimensions.
	95.45	4.00	6.18	8.03	
	99.	6.63	9.21	11.34	
	99.73	9.00	11.83	14.16	
=		•			

- This 68% (e.g. 1σ) C.L. is what we generally report as an error band.
- So, in Stats-ese: ML Estimate 1.056 with 68% CL 1.022-1.090
- In Physic-ese: 1.056 ± 0.034

A little more realism

- Choice of likelihood function
 - It's rare in neutrino physics that we have so much data that χ^2 is valid.
 - Instead, we use an *L* which is based on bins with Poisson errors.

$$-2\ln \mathcal{L}(\theta) = \sum_{i=1}^{N} \frac{\left(O_i - E_i(\theta)\right)^2}{\sigma^2} = \chi^2$$
$$-2\ln \lambda(\theta) = 2\sum_{i=1}^{N} \left[\mu_i(\theta) - n_i + n_i \ln \frac{n_i}{\mu_i(\theta)}\right] ,$$
If you have bins with < 30 entries, you probably need this. Just look it up in the PDG.

- More variables?
 - If you have 2 variables, and you want to show 2 variables, then it's straightforward.
 - Just pick the right up value, and points below it are in.

$(1 - \alpha)$ (%)	m = 1	m=2	m=3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

- More variables?
 - If you have 2 variables, and you want to show 2 variables, then it's straightforward.
 - Just pick the right up value, and points below it are in.

(1-lpha)~(%)	m = 1	m=2	m=3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

More variables?

- If you have 2 variables, and you want to show 2 variables, then it's straightforward.
- Just pick the right up value, and points below it are in.

(1-lpha)~(%)	m = 1	m=2	m=3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

- Nuisance parameters
 - Often your likelihood depends on more parameters than you want to present.
 - Extra parameters can be physics or systematic uncertainties.

• For example, in the NOvA joint fit we do: $(\Delta m^2, \theta_{23}, \theta_{13}, \delta, \text{ systematic errors}) \rightarrow (\theta_{23}, \delta)$

- Two different approaches:
 - Profiling
 - Marginalizing

- Profiling
 - Take the best fit in all parameters you are not showing *at each point* you do show.
 - More common, works under certain assumptions.

- Marginalizing
 - Integrate up all the values you are not showing.
 - Shows up more in Bayesian analyses.

- What if you can't trust the values from the PDG?
 - They don't have the right coverage:
 a 90% C.L. is actually an 85% C.L.
- Commonly happens when statistics are low and the problem has a physical boundary.
 - Happens a lot in neutrino physics since $0 < \sin^2 2\theta < 1$

Feldman-Cousins

• The solution is a technique called **Feldman-Cousins**

- From a paper called "A Unified Approach to the Classical Statistical Analysis of Small Signals"
 - by Gary Feldman and Bob Cousins
 - Phys. Rev. **D**57 (1998) 3873
- Let's walk through an example.

• A real-life example from the MINOS anti- v_{μ} disappearance analysis circa 2010.

Frequentist

- The true value of a measurement is **an unknown constant**.
- Report the **probability of experimental outcomes**, given a value of that constant.
- Use that to construct a confidence interval which will contain the true value in α fraction of experiments.

Bayesian

- The true value of a measurement is a **random variable**.
- Before the measurement, have a "prior" PDF of that variable.
- After the measurement, **update to a "posterior" PDF** using the data collected.

Frequentist

• Apply solid mathematical rigor to answer a question that nobody cares about.

Bayesian

• Answers the question everyone is really interested in using assumptions no one believes.

Frequentist

Bayesian

- In the real world:
 - This is from the latest T2K PRD, arXiv:1707.01048

Conclusion

- I've tried to show the statistical underpinnings of some of the most common statistical techniques we use.
 - But there are many, many more possible techniques.
 - There are numerous alternative ways to do everything I have presented here.
- Some general advice: use the simplest method that is correct, but no simpler.
 - If you use a technique that requires assumptions that you cannot meet, your results will be questioned.
 - But, if you use a more complicated technique, be prepared to explain how it works and why you chose it.
- I highly recommend the PDG statistics section as a place to find statistical techniques which are "commonly accepted" in physics.

Backups

$$\mu_1 = 2.5 \pm 0.1 \quad \mu_2 = 3.1 \pm 0.3$$
$$X = \mu_2 - \mu_1 = 0.6$$

- We know, from the central limit theorem, that means are normally distributed.
 - The difference between means is, too.
 - The standard deviation of that difference is:

$$\sigma_{\mu_2 - \mu_1} = \sqrt{\sigma_{\mu_2}^2 + \sigma_{\mu_1}^2} = 0.32$$

• Now the question is: Is 0.6 significantly different from 0 if it comes from a normal distribution with $\sigma = 0.32$?

- What we are asking is: how likely is it that we would get our result, or something more extreme assuming the null hypothesis is true?
 - This is the definition of *p*-value, which we compare to our α .
- "different from" means we are making a "two-sided" test:
 - If we set an α = 0.05, we want to know if our value falls into the central 1-*α* or 95% of the distribution.

• To start, we calculate a "Z-score," which effectively converts from our specific normal distribution to the canonical $\mathcal{N}(0,1)$:

$$Z = \frac{X - \mu_0}{\sigma} = \frac{0.6 - 0}{0.32} = 1.88$$
This is what we mean when we

70

we

say "1.88 σ"

- But, what does that *Z*-score mean?
 - In other words, what is it's *p*-value we can compare to α ?
 - What fraction of values in the distribution are more extreme than ours?

$$p = \int_{-\infty}^{-Z} \mathcal{N}(x,1) dx + \int_{Z}^{\infty} \mathcal{N}(x,1) dx$$

• But infinity is hard, so we can take advantage of the fact that probabilities all add up to 1 to do the inverse:

$$p = 1 - \int_{-Z}^{Z} \mathcal{N}(x, 1) dx$$

$$p = 1 - \int_{-Z}^{Z} \mathcal{N}(x, 1) dx$$

 This integral doesn't have an analytical solution, but we need it all the time, so it's results are readily available as the "error function"

$\mu_1 = 2.5 \pm 0.1 \quad \mu_2 = 3.1 \pm 0.3$

- With *p* = 0.06, we have failed to reject the null hypothesis at *α* = 0.05.
- "These two means are consistent at the 95% level."
- Or, we might say:
 - "These means differ by 1.88σ " or
 - "They are consistent at the 94% level"

- Now, we need to choose a test statistic.
 - There are several choices for this problem.
 - Which one is the right one depends on the circumstance.

• A good first guess: try a chisquare (χ^2) test.

This is what the test statistic looks like:

$$T = \sum^{N} \frac{(O_i - E_i)^2}{\sigma^2}$$

 Squared difference between the histograms, normalized by the expected uncertainty.

- Why this test statistic?
 - Let's see how it behaves assuming H_0 .
 - The data is drawn randomly from the model, so each bin, O_i, should be drawn randomly from the model:

$$O_i \sim \mathcal{N}(\underline{E_i}, \sigma)$$

• Given that, the argument in the sum of the chisquare should look familiar – it is a *Z*-score, squared.

$$T = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{\sigma^2} \quad Z = \frac{X - \mu_0}{\sigma}$$