The Neutrino "Livingston" Plot INSS 2017. Fermilab. 2017. Aug. 17. #### Supergroup 22+23: James Ellison David Friant Adam Lister Shivesh Mandalia Ben Messerly ### The Original #### M. Stanley Livingston • FNAL director 1967-1970 Accelerator CoM energy was doubling every six years! ## **Neutrino Detector Mass** #### **Neutrino Detector Mass** #### **Neutrino Detector Mass** #### **Neutrino Detector Mass - Bubble Chamber** #### **Neutrino Detector Mass - Radiochemical** #### **Neutrino Detector Mass – Segmented Tracker** #### **Neutrino Detector Mass – Unsegmented Scintillator** #### **Neutrino Detector Mass - TPC** ### Neutrino Interaction Vertex Resolution #### **Neutrino Interaction Vertex Resolution** #### **Neutrino Interaction Vertex Resolution - Radiochemical** #### **Neutrino Interaction Vertex Resolution – Cherenkov** #### **Neutrino Interaction Vertex Resolution – Unseg Liq Scin** #### **Neutrino Interaction Vertex Resolution – Seg Tracker** #### **Neutrino Interaction Vertex Resolution – TPC** #### **Neutrino Interaction Vertex Resolution – Bubble Chamber** # Conclusion #### Our Data, Calculations, and Citations | В | С | D | E | F | G | |-------|----------------|-------------------|----------------------|--------------------------------|----------------------| | Start | End | Experiment | Detector Type | Location | mass [kg] | | 1961 | 1962 | AGS Spark Chamber | Tracking Calorimeter | BNL | 9.07E+03 | | 1996 | 2005 | AMANDA | Cherenkov | South Pole | 5.00E+09 | | 1969 | 1979 | ANL | Bubble Chamber | Argonne National Laboratory | 2.3kg (H), 4.6kg (D) | | 2016 | c - | ANNIE | Cherenkov | Fermilab | | | 2008 | - | ANTARES | Cherenkov | Mediterranean Sea | | | 2009 | 2010 | ArgoNEUT | TPC | Fermilab | 6.90E+02 | | 1998 | - | Baikal | Cherenkov | Baikal Lake, Russia | 2.00E+08 | | 1973 | 1984 | BEBC | Bubble Chamber | CERN | | | 1974 | | BNL 7ft | Bubble Chamber | Brookhaven National Laboratory | | https://docs.google.com/spreadsheets/d/1HKEvm6tsoRX3EGpANM3n6nKIHn5NldHmfSU16YiVcoM/edit?usp=sharing #### Notes on the method - Many caveats + exceptions! - Paper skimming, ancient pre-internet experiment archeology - Extensive approximations, back-of-the-envelope calculations - Where available use quoted resolutions instead of calculated resolutions - Calculations agree with quoted values within an order of magnitude; few exceptions. - See water cherenkov "n.b." in backup slides. - Most experiments don't care about and don't provide enough info to estimate resolution. # Backup #### Many Iterations of the Livingston Plot 2001 Snowmass Accelerator R&D Report Symmetry Magazine. Oct 1, 2009. $$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$ Resolution of a single PMT = timing resolution \times $c \times n$ Photons detected = $$N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$$ coverage $$N_{ m photons} = { m photons \ produced \over track \ length} imes { m track \ length} imes sin^2(heta_c)$$ (Cherenkov) Position Resolution = $$\frac{\text{Resolution of a single PMT}}{\sqrt{\text{Photons detected}}}$$ Resolution of a single PMT = timing resolution \times $c \times n$ Photons detected = $$N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum~Eff} \times \mathrm{PMT~coverage}$$ $$N_{ m photons} = rac{ m photons\,produced}{ m track\,length} imes { m track\,length} imes { m track\,length} imes { m track\,length}$$ (Cherenkov) - $x_0 \sim \text{detector scale}$ - $\lambda_{Abs} \sim 10 \text{ m}$ - Quantum Efficiency = 20% - PMT coverage ~ 10-40% - Coverage = $\Sigma (SA_{PMT})/SA_{det}$. For Ice Cube-style detectors $\sim \Sigma_{plane} (SA_{PMT})/SA_{det}$ $$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$ Resolution of a single PMT = timing resolution \times $c \times n$ Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage $$N_{ m photons} = rac{ m photons\,produced}{ m track\,length} imes { m track\,length} imes { m track\,length} imes { m track\,length}$$ (Cherenkov) *N.B.* For all detectors in these two categories, we used a **10 MeV electron** for photon source. Not what reactor or solar experiments ($E_v \sim 1 \text{MeV}$) had in mind when they were determining their resolutions! Generally: higher energy track → more photons → better resolution. $$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$ Resolution of a single PMT = timing resolution \times $c \times n$ Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage $$N_{\mathrm{photons}} = \frac{\mathrm{photons\ produced}}{\mathrm{track\ length}} \times \mathrm{track\ length} \times sin^2(\theta_c)$$ (Cherenkov) E.g. we found that using a 10 MeV electron for a reactor experiment ($E_v \sim 5$ MeV) lead to a calculated resolution \sim an order of magnitude better than the quoted resolution. Similarly, 10MeV too small for cosmo experiments. For consistency, used 10 MeV electron, though next iteration might adjust. Position Resolution = $$\frac{\text{Resolution of a single PMT}}{\sqrt{\text{Photons detected}}}$$ Resolution of a single PMT = timing resolution \times $c \times n$ Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage $$N_{ m photons} = rac{ m photons\,produced}{ m particle\,energy} imes m particle\,energy$$ (Scintillator) #### **TPCs** **New Experiments** Resolution ~ wire spacing (x&y) * drift distance/(drift time*sampling rate) #### Segmented Tracking #### Category Includes: - Spark Chamber (1962 v_{μ} discovery) - v_{τ} Emulsion (OPERA, DONuT) - Standard Scintillator Trackers (NuTeV, MINERvA, MINOS, NOvA) FIG. 4. Land print of Cosmic-ray muons integrated over many incoming tracks. #### **Resolution:** - Largely determined by dimensions/spacings of segments - Though experiments had their own fancy methods which could improve resolution.