The Neutrino "Livingston" Plot

INSS 2017. Fermilab. 2017. Aug. 17.

Supergroup 22+23:

James Ellison David Friant Adam Lister Shivesh Mandalia Ben Messerly

The Original

M. Stanley Livingston

• FNAL director 1967-1970

Accelerator CoM energy was doubling every six years!

Neutrino Detector Mass

Neutrino Detector Mass

Neutrino Detector Mass

Neutrino Detector Mass - Bubble Chamber

Neutrino Detector Mass - Radiochemical

Neutrino Detector Mass – Segmented Tracker

Neutrino Detector Mass – Unsegmented Scintillator

Neutrino Detector Mass - TPC

Neutrino Interaction Vertex Resolution

Neutrino Interaction Vertex Resolution

Neutrino Interaction Vertex Resolution - Radiochemical

Neutrino Interaction Vertex Resolution – Cherenkov

Neutrino Interaction Vertex Resolution – Unseg Liq Scin

Neutrino Interaction Vertex Resolution – Seg Tracker

Neutrino Interaction Vertex Resolution – TPC

Neutrino Interaction Vertex Resolution – Bubble Chamber

Conclusion

Our Data, Calculations, and Citations

В	С	D	E	F	G
Start	End	Experiment	Detector Type	Location	mass [kg]
1961	1962	AGS Spark Chamber	Tracking Calorimeter	BNL	9.07E+03
1996	2005	AMANDA	Cherenkov	South Pole	5.00E+09
1969	1979	ANL	Bubble Chamber	Argonne National Laboratory	2.3kg (H), 4.6kg (D)
2016	c -	ANNIE	Cherenkov	Fermilab	
2008	-	ANTARES	Cherenkov	Mediterranean Sea	
2009	2010	ArgoNEUT	TPC	Fermilab	6.90E+02
1998	-	Baikal	Cherenkov	Baikal Lake, Russia	2.00E+08
1973	1984	BEBC	Bubble Chamber	CERN	
1974		BNL 7ft	Bubble Chamber	Brookhaven National Laboratory	

https://docs.google.com/spreadsheets/d/1HKEvm6tsoRX3EGpANM3n6nKIHn5NldHmfSU16YiVcoM/edit?usp=sharing

Notes on the method

- Many caveats + exceptions!
- Paper skimming, ancient pre-internet experiment archeology
- Extensive approximations, back-of-the-envelope calculations
- Where available use quoted resolutions instead of calculated resolutions
 - Calculations agree with quoted values within an order of magnitude; few exceptions.
 - See water cherenkov "n.b." in backup slides.
- Most experiments don't care about and don't provide enough info to estimate resolution.

Backup

Many Iterations of the Livingston Plot

2001 Snowmass Accelerator R&D Report

Symmetry Magazine. Oct 1, 2009.

$$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$

Resolution of a single PMT = timing resolution \times $c \times n$

Photons detected =
$$N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$$
 coverage

$$N_{
m photons} = {
m photons \ produced \over track \ length} imes {
m track \ length} imes sin^2(heta_c)$$
 (Cherenkov)

Position Resolution =
$$\frac{\text{Resolution of a single PMT}}{\sqrt{\text{Photons detected}}}$$

Resolution of a single PMT = timing resolution \times $c \times n$

Photons detected =
$$N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum~Eff} \times \mathrm{PMT~coverage}$$

$$N_{
m photons} = rac{
m photons\,produced}{
m track\,length} imes {
m track\,length} imes {
m track\,length} imes {
m track\,length}$$
 (Cherenkov)

- $x_0 \sim \text{detector scale}$
- $\lambda_{Abs} \sim 10 \text{ m}$
- Quantum Efficiency = 20%
- PMT coverage ~ 10-40%
- Coverage = $\Sigma (SA_{PMT})/SA_{det}$. For Ice Cube-style detectors $\sim \Sigma_{plane} (SA_{PMT})/SA_{det}$

$$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$

Resolution of a single PMT = timing resolution \times $c \times n$

Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage

$$N_{
m photons} = rac{
m photons\,produced}{
m track\,length} imes {
m track\,length} imes {
m track\,length} imes {
m track\,length}$$
 (Cherenkov)

N.B. For all detectors in these two categories, we used a **10 MeV electron** for photon source.

Not what reactor or solar experiments ($E_v \sim 1 \text{MeV}$) had in mind when they were determining their resolutions!

Generally: higher energy track → more photons → better resolution.

$$Position \ Resolution = \frac{Resolution \ of \ a \ single \ PMT}{\sqrt{Photons \ detected}}$$

Resolution of a single PMT = timing resolution \times $c \times n$

Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage

$$N_{\mathrm{photons}} = \frac{\mathrm{photons\ produced}}{\mathrm{track\ length}} \times \mathrm{track\ length} \times sin^2(\theta_c)$$
 (Cherenkov)

E.g. we found that using a 10 MeV electron for a reactor experiment ($E_v \sim 5$ MeV) lead to a calculated resolution \sim an order of magnitude better than the quoted resolution.

Similarly, 10MeV too small for cosmo experiments.

For consistency, used 10 MeV electron, though next iteration might adjust.

Position Resolution =
$$\frac{\text{Resolution of a single PMT}}{\sqrt{\text{Photons detected}}}$$

Resolution of a single PMT = timing resolution \times $c \times n$

Photons detected = $N_{\mathrm{photons}} \times e^{-\frac{x_0}{\lambda_{Abs}}} \times \mathrm{Quantum \ Eff} \times \mathrm{PMT}$ coverage

$$N_{
m photons} = rac{
m photons\,produced}{
m particle\,energy} imes
m particle\,energy$$
 (Scintillator)

TPCs

New Experiments

Resolution ~

wire spacing (x&y) * drift distance/(drift time*sampling rate)

Segmented Tracking

Category Includes:

- Spark Chamber (1962 v_{μ} discovery)
- v_{τ} Emulsion (OPERA, DONuT)
- Standard Scintillator Trackers (NuTeV, MINERvA, MINOS, NOvA)

FIG. 4. Land print of Cosmic-ray muons integrated over many incoming tracks.

Resolution:

- Largely determined by dimensions/spacings of segments
- Though experiments had their own fancy methods which could improve resolution.

