
Parallelizing LArSoft modules II:
MPI and OMP together

ERIC CHURCH, JUAN BRANDI-LOZANO, MALACHI SCHRAMM
RDNS and SDI groups, PNNL
20-Sep-2016

December 2, 2016 1

Outline

December 2, 2016 2

  Motivation
  Want to speed up the code with minimal memory hit.

  Still focused on GausHitFinder_module.cc
  Remind of OMP work from August talk
  Now we tack on MPI

  Results
  … such as they are

LArSoft meeting

One might hope to gain performance
improvements by threading up various
LArSoft modules

December 2, 2016 3

  At PNNL I have a colleague (Juan) fluent with OpenMP and with MPI
  We have lots of scientific computing resources at PNNL. In particular, one 24
core machine with 128+ GBytes memory we can play with. It’s largely all
ours.

  OMP only requires small CMakeLists.txt changes and adding a couple
pragmas in front of desired for loop
  One big shared memory chunk that all the threads see

  We implemented OMP and have since moved to MPI
  MPI distributes the memory across cores, and we throw some iterations of
loops at those cores.

  In both cases, goal is to assemble the object at end of module after all
threads are done, and, in one place, put_into() the event. Meaning, one
serial task is still required to gather all output up.

LArSoft meeting

Time spent in a typical reco chain 5_08

December 2, 2016 4

  ==
===================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts

  ==
===================================

  Full event 26.4698 29.1435 31.1214 29.4146 1.47419 10

reco:rns:RandomNumberSaver 3.4461e-05 8.39357e-05 0.000455685 4.3729e-05 0.000124034 10
reco:digitfilter:NoiseFilter 13.428 13.5213 13.7195 13.4706 0.0937018 10
reco:caldata:CalWireROI 3.92545 4.2721 4.55916 4.319 0.176564 10
reco:gaushit:GausHitFinder 1.44308 2.67415 3.65894 2.72471 0.738649 10
reco:TriggerResults:TriggerResultInserter 2.2549e-05 3.02089e-05 8.0534e-05 2.49175e-05 1.68072e-05 10
end_path:hitana:GausHitFinderAna 0.384017 0.472613 0.569486 0.489097 0.0613182 10

  end_path:out1:RootOutput 7.25915 8.20184 8.92039 8.37981 0.524692 10

  ROOT 6_02 out of the box
reco:gaushit:GausHitFinder 2.75883 7.17243 12.1659 7.28882 2.66237 10

These	 are	 (mes	 for	 10	 MicroBooNE	 real	 data	 events.	

LArSoft meeting

GSL 1 Thread vs 8 Threads – uB data

December 2, 2016 5

  ==
===================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts

  ==
===================================

  Full event 27.0138 28.7438 30.038 29.088 1.01262 10

reco:rns:RandomNumberSaver 5.9985e-05 0.000112205 0.000446773 6.93335e-05 0.000112637 10
reco:digitfilter:NoiseFilter 14.6211 14.7859 14.9135 14.8057 0.105385 10
reco:caldata:CalWireROI 3.80954 4.13443 4.43179 4.17129 0.17415 10
reco:gaushit:GausHitFinder 0.621876 1.14477 1.55812 1.16916 0.335909 10
reco:TriggerResults:TriggerResultInserter 3.7077e-05 6.42121e-05 9.7182e-05 5.7808e-05 2.4508e-05 10
end_path:hitana:GausHitFinderAna 0.367328 0.473554 0.604935 0.499931 0.0754328 10

  end_path:out1:RootOutput 7.28578 8.2021 8.90999 8.3884 0.523765 10
  ==

===================================

  GSL 8 Threads
reco:gaushit:GausHitFinder 0.205231 0.463043 0.780243 0.510354 0.166003 10

x5	 faster	 just	 ge?ng	 rid	 of	 ROOT6	 in	 favor	 of	 GSL	 fi?ng.	 another	 x2.5	
faster	 going	 to	 8	 threads.	 	

LArSoft meeting

Validation plots

December 2, 2016 6

Nothing	 has	 been	 broken	 going	 to	 GSL!	 ….	

LArSoft meeting

What modules should be next?

December 2, 2016 7

  All above pushed to larreco feature/echurch_

RawDigitFilter in MicroBooNE’s case, anyway, is another big offender.
  Removes various noise sources

  This is changing bigly for MCC8, so let’s not assume it remains an offender

  But, it is another module that runs over (groups of) wires, and should
probably be easy to ||’ize.
  I should never say easy.
  There could be memory problems holding onto groups of wires.
  But the whole ROOT fitting rathole is absent in this module.

  In general, a lot of low hanging fruit for OMP threading for little cost.

LArSoft meeting

How does this all fit into HPC at FNAL?

December 2, 2016 8

  I don’t know.

  condor knows how to allocate jobs for multi-threaded code, I think.
  Does jobsub know how to wrap that up? Certainly, not all modules’ needs can
be balanced and jobs put on appropriate worker nodes.

  => if all cores on a node are already spinning, there’s nothing to be
gained from any of this threading.

LArSoft meeting

MPI – message passing interface

December 2, 2016 9

  I put out a message on artists listserv to ask if any consideration has
been given by art to launch events within a job with MPI.
  I received the answer that artdaq does in fact use MPI.
  Which is true: basically to set up the running BoardReader and EventBuilder
processes and pass fragments from one to the other.
  Kind of a non-answer wrt art and LArSoft

  If I search on cmssw I find that there’s an open issue suggesting that N
events be spawned with MPI and finish and more started …
  This seems like a great idea, but alas it ends with a whimper …
  https://github.com/cms-sw/cmssw/issues/12922

EC:	 2015?	

LArSoft meeting

MPI 2

December 2, 2016 10

  This would mean jobs do not get “stuck” on a slow event, as other cores
are still at work on other events on nodes across an infiniband-connected
network.
  This is probably the right way to use MPI

  Absent using MPI like that, can we launch jobs that, within a given
module, are allowed to fork processes out to other nodes?
  Umm, no, it turns out.
  The central issue: in the deeply buried art state machine we can’t just grab
onto the main() and launch MPI processes around the one module we care
about.
  We have to launch MPI once and have all the modules in the job run on N
processors.

  This is stupid: modules which you don’t care about just run N redundant copies.
produce() modules stomp on each other’s output.
TimeService and MemoryService, e.g., choke and die cuz they’re trying to write to
the same sql .db file simultaneously.

LArSoft meeting

MPI 3

December 2, 2016 11

  Nevertheless, we did precisely the aforementioned thing.
  Shut off TimeService and MemoryService

  In GausHitFinder only do we pass messages.
  Meaning, only here do we deliberately code to MPI.

  We do the following
  We ask particular ranges of the Wire iterations to go run on other nodes.

Proc 0 is the master; it sits and waits for the others to pass back their data
  There are lots of gymnastics required to pack up the data on each end and
ship it and receive it as raw bytes.

  art::Ptrs, etc, may not be passed as messages
std::maps may not be passed (nor std::anything)
  We have to loop over wires to receive the data from each proc
  The hitCol is assembled, and finally put_onto() the event as in the OMP case

LArSoft meeting

MPI 4

December 2, 2016 12

  Next stupid thing that’s necessary is in order to not have our N instances
of GausHitFinders all try to put_onto() their data and thus stomp all over
each other at the output stage, we kill procs 1,2,3, …,Nproc after
everyone reports to proc0, and we only allow proc 0 to proceed.
  Maybe instead there’s a way to suppress the put_onto() in the non-0 procs
but we didn’t pursue that.

  We dump the expected hits out to the art-root file.
  Subsequent modules finish out fine,
  We can run precisely one event in this manner.

  It’s a non-optimal, proof-of-principle.
  Not sure entirely which principle.
  MPI could be used, I guess, is the statement.

LArSoft meeting

Launch the job

December 5, 2016 13

LArSoft meeting

Output from redundant module running

December 2, 2016 14

Set	 N=4.	 Services	 and	 everything	 all	 redundantly	 repor(ng	 4	 (mes	 	

LArSoft meeting

In GausHitFinder only each proc does
unique work

December 5, 2016 15

Each	 Proc	 1-‐3	 works	 on	 1109	
wires	

LArSoft meeting

MPI*OMP results

December 2, 2016 16

  I remind that within each of the N MPI process we still spawn our M OMP
threads

  There’s some overhead to the N-1 message passing, and it is expected
that performance gains will only be observed if the work performed in the
Wire iterations is substantial compared to that time.

LArSoft meeting

MPI*OMP wall time in GausHitFinder

December 5, 2016 17

Unhappily,	 the	 compute	 (me	 required	 is	 fast	 enough	 that	 we	 don’t	 clearly	 see	 the	 desired	 scaling.	

LArSoft meeting

MPI*OMP wall time in GausHitFinder with
usleep (1000) inside the Wire loop

December 5, 2016 18

Bloa(ng	 up	 the	 compute	 (me	 per	 thread,	 we	 see	 scaling	 (perhaps	 not	 linear).	

LArSoft meeting

Summary, next work

December 2, 2016 19

Would like to do some MPI implementation
Would perhaps be very useful to show how this works across multiple nodes.

  art should consider work to allow MPI spawned events
  or some means by which to fork mpi jobs module-by-module

  We’d like to partner with FNAL to do some of this work if it’s deemed
valuable.

