
Track design discussion

Erica Snider

Fermilab

March 31, 2014

Mar 31, 2014 Track design discussion 2

Goals for this meeting

 To review the requirements for the Track class, including the
newly proposed attributes

 To review the interface and abstractions used

 To discuss the role of BezierTrack

 To propose changes needed to address any issues

 Discuss other associated issues

3

What is a track?

 A complex collection of data, parameters and attributes.
Broadly speaking:

● A trajectory through space representing the path a particle took

● A set of hits that represent the measurement positions of the particle.

● The ionization energy deposited by the particle at various points along the traj.

– The same as the position measurements in LArSoft, but logically can be treated as
separate from the position estimates.

● A set of parameters that de(ne the trajectory at one or more points

– Includes our knowledge of how well we know the parameters and the (t quality, NDoF

– Should include information on which hits are included in the (t, and how, if important

● Momentum / energy

– Might require a PID. Probably also need to store the algorithm and uncertainties

● A collection of other useful attributes

– Geometrical con(guration (ie, exits the side, through-going, etc)

– Number of hits

– PID / PID probabilities

– Algorithm tag

– Parent track(s) pointer

4

What is a track?

 They come from many diferent sources and times in the
reconstruction chain:

● A trajectory through space representing the path a particle took

– Output of a (tting algorithm or some other trajectory estimation algorithm

● A set of hits that represent the measurement positions of the particle.

– Output of a pattern-recognition algorithm

● The ionization energy deposited by the particle at various points along the traj.

– The product of an energy estimation algorithm. May or may not be associated with the
position estimation procedure.

● A set of parameters that de(ne the trajectory at one or more points

– Output of a (tting algorithm

● Momentum / energy

– Output of a calorimetry algorithm or range estimating technique.

● A collection of other useful attributes

– Geometrical con(guration (ie, exits the side, through-going, etc)

– Number of hits

– PID / PID probabilities

– Algorithm tag

– Parent track pointer(s)

5

What is a track?

 One could imagine multiple versions of some attributes
associated with the track:

● A trajectory through space representing the path a particle took

– If multiple (ts

● A set of hits that represent the measurement positions of the particle.

– Fixed by de(nition

● The ionization energy deposited by the particle at various points along the traj.

– The result of diferent algorithms or calibration passes

● A set of parameters that de(ne the trajectory at one or more points

– If multiple (ts

● Momentum / energy

– Multiple versions out of the box

● A collection of other useful attributes

– Geometric con(guration (possible if multiple (ts allowed)

– PID probabilities

6

Where does BezierTrack come in?

 Adds a continuous representation for the track trajectory

– Uses sub-set of trajectory hits in parameterization of this trajectory

 A trajectory, continuous or otherwise, is an attribute of a track

– There is not an “is-a” relationship between a trajectory and a track

 Suggest that we make a trajectory class that we add as a data
member (or via association) to a track

– Eliminate the BezierTrack class altogether

Mar 31, 2014 Track design discussion 7

What next?

 First, what do we need to have associated with a Track object?

– Are all these parameters really members of what we call a track?

– Everything that is absolutely needed should be in the interface

● Can use external associations for the rest (?)

 Second, how should we represent the data?

– Some things may be better represented as associations with the “track”

● Particularly those that are created at diferent times from the original track, or
have multiple versions

● “Association” here means “by reference”, so not strictly talking about art::Assn

– Can hide complexity of associations behind interface of a unifying class

● For example, could use the existing track interface + new accessors

● The“facade”/helper class should provide access to the

8

A couple of broad design principles

 Data products should generally be simple data structures

– Complex behavior should be delegated to associated helper classes that
use / contain the data structures

 Inheritance among data products generally does not work well

– Two problems

● The persistency and event model schemes make it difcult to access by
reference to the base class

– Collections carry the type of the sub-class

– Smart pointers carry the type of the sub-class

● Inheritance deals with object behavior

– Data objects, with rare exception, should have very little behavior

– Other types of relationships can be handled equally well using something other than
inheritance

– Options are to make lots of diferent track classes, or make one that allows
considerable ;exibility in the data it provides

● Associations can do this easily

Mar 31, 2014 Track design discussion 9

A comment on using tracks

 Might be useful to adopt the use of reference lists to access
tracks

– Provides a simple mechanism for selecting and sorting tracks that are
otherwise stored in immutable collections.

– Provides a simple means of gathering tracks from multiple collections, as
would occur if there were more than one tracking algorithm or pass.

– Allows analyzers to de(ne small collections of tracks associated with some
process.

● A vertex needs this type of list if that vertex is de(ned from tracks

 Can do this with art Assn, perhaps wrapped in something that
makes it clear what it is.

Mar 31, 2014 Track design discussion 10

Discussion

 Requirements

 Interface

 BezierTrack

 Changes

 Other issues

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

