
Track design discussion

Erica Snider

Fermilab

March 31, 2014

Mar 31, 2014 Track design discussion 2

Goals for this meeting

 To review the requirements for the Track class, including the
newly proposed attributes

 To review the interface and abstractions used

 To discuss the role of BezierTrack

 To propose changes needed to address any issues

 Discuss other associated issues

3

What is a track?

 A complex collection of data, parameters and attributes.
Broadly speaking:

● A trajectory through space representing the path a particle took

● A set of hits that represent the measurement positions of the particle.

● The ionization energy deposited by the particle at various points along the traj.

– The same as the position measurements in LArSoft, but logically can be treated as
separate from the position estimates.

● A set of parameters that de(ne the trajectory at one or more points

– Includes our knowledge of how well we know the parameters and the (t quality, NDoF

– Should include information on which hits are included in the (t, and how, if important

● Momentum / energy

– Might require a PID. Probably also need to store the algorithm and uncertainties

● A collection of other useful attributes

– Geometrical con(guration (ie, exits the side, through-going, etc)

– Number of hits

– PID / PID probabilities

– Algorithm tag

– Parent track(s) pointer

4

What is a track?

 They come from many diferent sources and times in the
reconstruction chain:

● A trajectory through space representing the path a particle took

– Output of a (tting algorithm or some other trajectory estimation algorithm

● A set of hits that represent the measurement positions of the particle.

– Output of a pattern-recognition algorithm

● The ionization energy deposited by the particle at various points along the traj.

– The product of an energy estimation algorithm. May or may not be associated with the
position estimation procedure.

● A set of parameters that de(ne the trajectory at one or more points

– Output of a (tting algorithm

● Momentum / energy

– Output of a calorimetry algorithm or range estimating technique.

● A collection of other useful attributes

– Geometrical con(guration (ie, exits the side, through-going, etc)

– Number of hits

– PID / PID probabilities

– Algorithm tag

– Parent track pointer(s)

5

What is a track?

 One could imagine multiple versions of some attributes
associated with the track:

● A trajectory through space representing the path a particle took

– If multiple (ts

● A set of hits that represent the measurement positions of the particle.

– Fixed by de(nition

● The ionization energy deposited by the particle at various points along the traj.

– The result of diferent algorithms or calibration passes

● A set of parameters that de(ne the trajectory at one or more points

– If multiple (ts

● Momentum / energy

– Multiple versions out of the box

● A collection of other useful attributes

– Geometric con(guration (possible if multiple (ts allowed)

– PID probabilities

6

Where does BezierTrack come in?

 Adds a continuous representation for the track trajectory

– Uses sub-set of trajectory hits in parameterization of this trajectory

 A trajectory, continuous or otherwise, is an attribute of a track

– There is not an “is-a” relationship between a trajectory and a track

 Suggest that we make a trajectory class that we add as a data
member (or via association) to a track

– Eliminate the BezierTrack class altogether

Mar 31, 2014 Track design discussion 7

What next?

 First, what do we need to have associated with a Track object?

– Are all these parameters really members of what we call a track?

– Everything that is absolutely needed should be in the interface

● Can use external associations for the rest (?)

 Second, how should we represent the data?

– Some things may be better represented as associations with the “track”

● Particularly those that are created at diferent times from the original track, or
have multiple versions

● “Association” here means “by reference”, so not strictly talking about art::Assn

– Can hide complexity of associations behind interface of a unifying class

● For example, could use the existing track interface + new accessors

● The“facade”/helper class should provide access to the

8

A couple of broad design principles

 Data products should generally be simple data structures

– Complex behavior should be delegated to associated helper classes that
use / contain the data structures

 Inheritance among data products generally does not work well

– Two problems

● The persistency and event model schemes make it difcult to access by
reference to the base class

– Collections carry the type of the sub-class

– Smart pointers carry the type of the sub-class

● Inheritance deals with object behavior

– Data objects, with rare exception, should have very little behavior

– Other types of relationships can be handled equally well using something other than
inheritance

– Options are to make lots of diferent track classes, or make one that allows
considerable ;exibility in the data it provides

● Associations can do this easily

Mar 31, 2014 Track design discussion 9

A comment on using tracks

 Might be useful to adopt the use of reference lists to access
tracks

– Provides a simple mechanism for selecting and sorting tracks that are
otherwise stored in immutable collections.

– Provides a simple means of gathering tracks from multiple collections, as
would occur if there were more than one tracking algorithm or pass.

– Allows analyzers to de(ne small collections of tracks associated with some
process.

● A vertex needs this type of list if that vertex is de(ned from tracks

 Can do this with art Assn, perhaps wrapped in something that
makes it clear what it is.

Mar 31, 2014 Track design discussion 10

Discussion

 Requirements

 Interface

 BezierTrack

 Changes

 Other issues

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

