Physics TDR Assessment NDK Group

Jen Raaf and Michel Sorel

DUNE Physics Conveners Meeting December 13th, 2016

1

Part 1: CDR

CDR assumptions

• Signal efficiency and background rates for NDK modes considered promising in DUNE:

Table 4.1: Efficiencies and background rates (events per Mt \cdot year) for nucleon decay channels of interest for a large underground LArTPC [97], and comparison with water Cherenkov detector capabilities. The entries for the water Cherenkov capabilities are based on experience with the Super–Kamiokande detector [99].

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1
$p o K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8

- Note: assume backgrounds are dominated by atmospheric neutrinos
- Assume systematic uncertainty on signal efficiencies and background rates is negligible

CDR assumptions

Digging deeper

- CDR efficiencies and backgrounds from Bueno et al. paper, hep-ph/0701101, assuming:
 - 100-kt LAr-TPC detector module
 - Nuclear effects (NDK, v-A) and atmospheric neutrino interactions with FLUKA / PEANUT / NUX
 - Fast reconstruction based on energy/angular smearing, and momentum thresholds for particle detection (30 MeV/c for K⁺, 20 MeV/c for μ)

Perfect particle identification

- Essential to replace these assumptions with DUNE-specific end-to-end simulations
- Straightforward to compute τ/B sensitivity for any exposure once signal efficiency and background rate are estimated

CDR sensitivity $\rho \rightarrow \nabla K^+$

• DUNE CDR sensitivity (90% CL) for $p \rightarrow \overline{v} K^+$ versus exposure and versus Super-K:

- **DUNE** sensitivity: $\tau/B > 3.8 \times 10^{34}$ yr for 400 kt·yr
- Compare with SK 2014 limit: $\tau/B > 0.59 \times 10^{34}$ yr for 260 kt·yr

Pretty good!

CDR sensitivity Other modes

•

• Other modes (partial overlap with Tab.4.1 modes in slide 2):

Part 2: FDTF Final Report

First update to CDR: FDTF Final Report March 2017

- Goal for FDTF Final Report: NDK sensitivity with DUNE's estimate of signal efficiency and background rate. From end-to-end simulation/reconstruction/analysis chain
 - Do this for p → \overline{v} K⁺. Unlikely for other modes on March 2017 timescale
 - In sensitivity calculations, assume atmospheric neutrino backgrounds dominate
 - But try to run cosmogenic events through full reconstruction by March 2017
 - Keep assuming, without motivating, that systematic errors are negligible
- Where are we now (Dec 2016) for p → \overline{v} K⁺? Next four slides

Current state-of-the-art Signal efficiency for $p \rightarrow \nabla K^+$

• Trigger efficiency from photon detector system close to 100% (Kevin Wood):

Current state-of-the-art

Signal efficiency for $p \rightarrow \overline{v} K^+$

 Event selection efficiency with current full reco/analysis chain, p events (Aaron Higuera):

Category	Description
Golden	Pass K ⁺ PIDA criterion & Stopping µ ⁺ candidate (range)
Silver	Pass K ⁺ PIDA criterion
Bronze	Stoppin 🗗 μ+ candidate (range)
All	

Efficiency

 $PIDA_i = (dE/dx)_{calo} R^{0.42}$

 \mathcal{V}

10

Current state-of-the-art Background rate for $p \rightarrow \nabla K^+$

Atmospheric neutrino backgrounds

• Very preliminary estimate for golden-like NDK selection (Aaron Higuera, Sept 2016 CM):

- Mostly v_{μ} CC interactions
- Let's not worry too much (yet), still early days for NDK analysis based on full sim/reco

Background	Efficiency	
Kaon ID	33.3%	
Stopping Muon	23.0%	
210 <p<250 mev<="" td=""><td>1.5%</td></p<250>	1.5%	
no shower-like	0.18%	

Current state-of-the-art Background rate for $p \rightarrow \nabla K^+$

Cosmogenic backgrounds

- Very preliminary estimate based on MC truth (Matt Robinson): B ~ 0.5 / (Mt · yr)
- One event passing all cuts in 10-kt FV out of 10⁹ simulated muons (200-yr exposure)
- This would be tolerable rate if confirmed with full sim/reco

Part 3: TDR

Risk no.1 and direction changes

•

- Risk no.1: LAr-TPC event reconstruction performance for $p \rightarrow \bar{v} K^+$ events is far worse than what was assumed in the CDR
 - Far worse in terms of signal efficiency, background rate, or both
 - Assessment of "standard" reconstruction performance on p → v K⁺ in FDTF Final Report
 - Possible direction change: start exploring alternative reconstruction around March 2017 if standard performance not satisfactory
 - Options include reconstruction tailored on specific NDK topologies, or other sophistications (eg, machine learning)

Risk no.2 and direction changes

- Risk no.2: systematic uncertainty on signal/background expectations is large, having a big hit on NDK sensitivities
 - Unable to quantify this risk at the moment. Direction change: start addressing NDK systematic uncertainties during 2017
 - Level of sophistication may not need be ultra-high, e.g. at the level of systematic uncertainty studies for LBL CDR sensitivities?
- For comparison, table shows Super-K sensitivities for various NDK modes assuming:
 - Negligible syst uncertainties: numbers in ()
 - Realistic syst uncertainties: numbers outside ()
 - 20-30% errors on signal efficiencies
 - 40-70% errors on background rates

$\tau/\mathrm{Br}~(10^{33}\mathrm{yrs})$	This	Thesis
$p \to e^+ \pi^0$	8.2	(9.1)
$p \rightarrow \mu^+ \pi^0$	6.6	(7.3)
$p \to e^+ \eta$	4.2	(5.4)
$p \to \mu^+ \eta$	1.3	(1.8)
$p \rightarrow e^+ \rho^0$	0.71	(0.96)
$p \to \mu^+ \rho^0$	0.16	(0.23)
$p \to e^+ \omega$	0.32	(0.63)
$p \to \mu^+ \omega$	0.78	(1.1)
$n \to e^+ \pi^-$	2.0	(3.2)
$n \to \mu^+ \pi^-$	1.0	(1.7)
$n \to e^+ \rho^-$	0.070	(0.18)
$n \to \mu^+ \rho^-$	0.036	(0.16)

Risk no.3 and direction changes

•

- Risk no.3: DUNE is unable to perform the <u>broad</u>, sensitive, searches for baryon number violation we have been advertising
 - Broad program in DUNE implies sensitive searches in several/tens of NDK modes, not just $p \rightarrow \overline{v} K^+$. And also n-nbar oscillation searches
 - Unable to quantify this risk at the moment. Direction change: need to bring few other analyses to the level of maturity of p → v K⁺ during 2017
 - Favour analyses relying on different experimental strategies in DUNE and/or different theory motivation, compared to p → v K⁺
 - Priorities toward full analysis, in addition to $p \rightarrow \overline{v} K^+$:

Analysis	Motivation
$p \rightarrow I^+ K^0 (I = e, \mu)$	Different exp strategy (+ DUNE should do well)
p → e+ π ⁰	Different theory motivation (non-SUSY GUTs), different exp strategy
n-nbar	Different theory motivation (new physics at 10 ³ -10 ⁵ GeV), different exp strategy

Effort allocation and priorities

- Prioritise by addressing first three above-mentioned risks, namely:
 - poor reconstruction performance, systematics-dominated sensitivities, overly narrow searches
- Risk no.3: easy to adjust to available resources the max number of full analyses that can be explored in parallel
 - **Philosophy**: better to have few (1-4?) full analyses in TDR rather than lots of "half-cooked" analyses
- There should be synergies in systematic uncertainty evaluation across different analyses. Perhaps also in alternative reconstruction. If so, exploit those.
 - Example: dominant systematics on Super-K signal efficiency for most NDK modes is nuclear effects → one "GENIE expert" may provide this knowledge for all DUNE analyses?

TDR assessment goal 3 TDR goalposts

- TDR initial goalpost should include **demonstration** (with full MC) of "quasibackground-free" searches for some key NDK modes discussed above
 - This is an important "DUNE CDR selling point" that we should try to maintain
 - Quasi-background-free = <1 background event per 400 kt·yr
- TDR should also include demonstration (with full MC) that quasi-background-free regime can be reached with signal efficiency that is significantly better (eg, factor 2-4) than Water Cherenkov efficiency for at least some modes
 - Example: 80% signal efficiency for $p \rightarrow \overline{v} K^+$, 40% for $p \rightarrow I^+ K^0 (I = e, \mu)$
- TDR should also include a first, simplified, **justification** (not quite demonstration) of systematic uncertainty assumptions on efficiency/background for key modes
 - Initial goal: systematic uncertainties have "little" effect on τ/B sensitivities (eg, <20-50% change?)