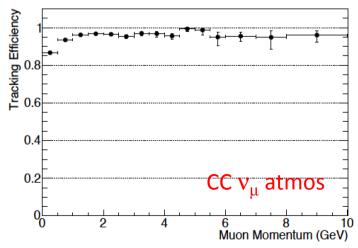
TDR Assessment Exercise – Atmospheric Neutrinos

H Gallagher, A Tonazzo December 12, 2016

lbne-doc-7184


CDR MH Sensitivity Studies – MANY Assumptions!

1. Low-level reco	Angular Resolution	Electron	1°
Track/shower finding		Muon	1°
Vertex determination		Hadronic system	10°
	Energy Resolution	Stopping muon	3%
		Exiting muon	15%
2. Flavor Determination		Electron	1%/√E +
Particle ID		1%	
Flavor classification		Hadronic system	30%/√E
	Signal Acceptance	Electrons	90%
3. Measurement		Muons	100%
Lepton energy, angle	Background	e-like (π ⁰ , γ)	95%
Hadronic system energy, angle	Rejection	μ-like (π ⁺ , π ⁻)	99%

Neutrino energy and direction resolution dominated by hadronic system measurements.

Atmospheric Neutrinos

- Risks and Direction Changes
 - Having CDR studies (MH determination) done with full sim/reco for TDR is unrealistic.
 - We do not see the continued use of some level of fast sim tools as a major problem, and also need to retain capacity for study of new (BSM?) physics ideas.
 - Would consider the absence of demonstrated progress as a risk.
 - If no significant effort on atmos reco:
 - Risk of developing software tools that are too beam-centric.
 - Risk of missed opportunities for analyses of proto-DUNE data and other data on the way to DUNE.
- Effort Allocation
 - Discussion at collaboration meeting
 - Piggybacking on other efforts:
 - reconstruction (beam vs. atmos),
 - LArIAT and ProtoDUNEs for single particle measurements, hadronic system studies.

A. Higuera, "Far Detector Tracking Efficiencies", https://indico.fnal.gov/getFile.py/access? contribld=63&sessionId=19&resId=0&materialId=slides&confId=10612²

Atmospheric Neutrinos

- TDR Goalposts
 - Studies of atmos nu background to proton decay will require full sim/reco.
 - Significant progress on key aspects of the reconstruction
 - Track/shower finding, vertex determination
 - Flavor Identification
 - "Significant progress" means fully automated, even if not meeting ultimate physics goals.