Observations of CEMP stars. II.

CEMP-no stars

Wako Aoki
 National Astronomical Observatory of Japan

CEMP-no stars

- Definition and classification
- Observational features
- Metallicity and C abundance distribution
- Binarity
- Li abundances
- Abundance patterns
- Neutron-capture elements

CEMP=Carbon Enhanced Metal-Poor stars

Carbon-enhanced stars in the Galactic halo are known as the spectral class CH stars (Keenan 1942).

A number of carbon-enhanced stars were identified by the HK survey (e.g. Beers et al. 1992)

The fraction of CEMP is estimated to be $\mathbf{1 0 - 2 5 \%}$ in [Fe/H]<-2.

CEMP definition

Beers \& Christlieb (2005, ARAA)
TABLE 2 Definition of subclasses of metal-poor stars
Neutron-capture-rich stars

r-I	$0.3 \leq[\mathrm{Eu} / \mathrm{Fe}] \leq+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]<0$
r-II	$[\mathrm{Eu} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]<0$
s	$[\mathrm{Ba} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]>+0.5$
r / s	$0.0<[\mathrm{Ba} / \mathrm{Eu}]<+0.5$

Carbon-enhanced metal-poor stars
CEMP $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$
CEMP-r $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Eu} / \mathrm{Fe}]>+1.0$
CEMP-s $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0,[\mathrm{Ba} / \mathrm{Fe}]>+1.0$, and $[\mathrm{Ba} / \mathrm{Eu}]>+0.5$
CEMP-r/s $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $0.0<[\mathrm{Ba} / \mathrm{Eu}]<+0.5$
CEMP-no $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Fe}]<0$

CEMP definition

- CEMP stars are well separated from C-normal stars in general, but CEMP-no stars could be affected by the definition
- Highly evolved red giants might be affected by CNO cycle

CEMP frequency

CEMP frequency increases with decreasing metallicity

Placco et al. (2014)

CEMP classification

Beers \& Christlieb (2005, ARAA)
TABLE 2 Definition of subclasses of metal-poor stars
Neutron-capture-rich stars

r-I	$0.3 \leq[\mathrm{Eu} / \mathrm{Fe}] \leq+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]<0$
r-II	$[\mathrm{Eu} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]<0$
s	$[\mathrm{Ba} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Eu}]>+0.5$
r / s	$0.0<[\mathrm{Ba} / \mathrm{Eu}]<+0.5$

Carbon-enhanced metal-poor stars
CEMP $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$
CEMP-r $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Eu} / \mathrm{Fe}]>+1.0$
CEMP-s
$[\mathrm{C} / \mathrm{Fe}]>+1.0,[\mathrm{Ba} / \mathrm{Fe}]>+1.0$, and $[\mathrm{Ba} / \mathrm{Eu}]>+0.5$
CEMP-r/s $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $0.0<[\mathrm{Ba} / \mathrm{Eu}]<+0.5$
CEMP-no $\quad[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Fe}]<0$

CS22957-027: A carbon-enhanced star with no excess of neutron-capture elements

[$\mathrm{Fe} / \mathrm{H}]=-3.38,[\mathrm{C} / \mathrm{Fe}]=+2.2,[\mathrm{Ba} / \mathrm{Fe}]=-0.97,[\mathrm{Sr} / \mathrm{Fe}]=-0.56$
Norris et al. (1997)
EXTREMELY METAL-POOR STARS. THE CARBON-RICH, NEUTRON CAPTURE ELEMENT-POOR OBJECT CS 22957-027

John E. Norris
Mount Stromlo and Siding Spring Observatories, The Australian National University, Private Bag,
Weston Creek Post Office, ACT 2611, Australia; jen@mso.anu.edu.au
Sean G. Ryan
Anglo-Australian Observatory, P. O. Box 296, Epping, NSW 2121, Australia, and Royal Greenwich Observatory,
Madingley Road, Cambridge CB3 0EZ, UK; sgr@ast.cam.ac.uk
AND
Timothy C. Beers
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824; beers@pa.msu.edu Received 1997 June 23; accepted 1997 September 4; published 1997 October 9

Bonifacio et al. (1998)

CS 22957-027: a carbon-rich extremely-metal-poor star*

P. Bonifacio ${ }^{1}$, P. Molaro ${ }^{1}$, T.C. Beers ${ }^{2}$, and G. Vladilo ${ }^{1}$
${ }^{1}$ Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste, Italy
${ }^{2}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI 48824, USA

CEMP classification

CEMP-s : Ba-rich stars (due to s-process) CEMP-no : Ba-normal stars

Aoki et al. (2002)
SAGA database (Suda et al. 2017)

"Hyper metal-poor" stars as extreme cases of CEMP-no

HE0107-5240 [Fe/H]=-5.4, [C/Fe]=+4.0, [Ba/Fe]<+0.8 HE1327-2326 [Fe/H]=-5.6, [C/Fe]=+4.3, [Ba/Fe]<+1.5

Aoki et al. (2007)

New definition of CEMP-no

[$\mathrm{Ba} / \mathrm{Fe}$] < +1.0 (or 0.0) for [C/Fe] < +2.0
[Ba/Fe] < [C/Fe]-1.0 (or -2.0) for [C/Fe]>+2.0
Matsuno et al. (2017)

Observational features

1. Metallicity and C abundance distribution
2. Binarity
3. Li abundances
4. Abundance patterns
5. Neutron-capture elements

CEMP-no stars (1) Metallicity and C abundance distribution

CEMP-s : found in [$\mathrm{Fe} / \mathrm{H}]>-3$, having high $[\mathrm{C} / \mathrm{H}]$ CEMP-no : mostly found in $[\mathrm{Fe} / \mathrm{H}]<-2.5$, having moderate $[\mathrm{C} / \mathrm{H}]$

CEMP-no stars (1) Metallicity and C abundance distribution

CEMP-s : found in [$\mathrm{Fe} / \mathrm{H}]>-3$, having high $[\mathrm{C} / \mathrm{H}]$ CEMP-no : mostly found in $[\mathrm{Fe} / \mathrm{H}]<-2.5$, having moderate $[\mathrm{C} / \mathrm{H}]$

Aoki et al. (2007)

CEMP-no stars (1) Metallicity and C abundance distribution

CEMP-no stars (2) binarity

No signature of high binary frequency

Hansen et al. (2016)

BD+44 493

10,000 days!

CS22957-027

CEMP-no stars (3) Li in warm stars

- CEMP-no stars with -4<[Fe/H]<-3 have normal Li abundance cf. Li in CEMP-s stars is depleted
- Li in Ultra/Hyper metal-poor stars (only two!) is depleted

CEMP-no stars (4) abundance pattern

 The carbon-enhanced star BD+44 493 [$\mathrm{Fe} / \mathrm{H}]=-3.7,[\mathrm{C} / \mathrm{H}] \sim[\mathrm{O} / \mathrm{H}] \sim-2.5$The normal Ba abundance, the high O / C, and the low N / C exclude the AGB and massive rotating stars as the progenitor
\rightarrow Faint supernova scenario is the remaining possibility.

CEMP-no stars (4) abundance pattern "CEMP- α "

Large excess of $\mathrm{C}, \mathrm{N}, \mathrm{O}$. and alpha elements with $[\mathrm{Fe} / \mathrm{H}]^{\sim}-4$

... "iron deficient" (Tsujimoto \& Shigeyama 2003, Umeda \& Nomoto 2003)

CS22949-037 ([Fe/H]=-4.0)
Depagne et al. (2002)
CS29498-043 ([Fe/H]=-3.5)
Aoki et al. (2002)

SAGA database (Suda et al. 2017)

Exploring the early chemical evolution of the Milky Way with LAMOST and Subaru

W. Aoki, T. Suda, S. Honda, M. Ishigaki, M. Aoki, T. Matsuno G. Zhao, H.-N. Lee, Zhao, J. Xing, Q., Shi, J., Zhang, S., Tan, K., Chen, Y. N. Christlieb

LAMOST

$$
R=1800
$$

Subaru
$R=45000$

CEMP-no stars (4) abundance pattern "CEMP- α "

- Very similar pattern between C and Ni
- Scatter in neutron-capture elements

Aoki et al. (in prep)

CEMP-no stars (5) neutron-capture elements: "CEMP-r stars"

How many CEMP-r stars do we know?

CS22892-052
Sneden et al. (1996)
CS22945-017
Roederer et al. (2014) BS16929-005?
Allen et al. (2012); but Lai et al. (2008) report lower Eu upper limit BS16543-097?
Allen et al. (2012); but Honda et al. (2004) and Aoki et al. (2005) report normal C abundance
CS31070-093?
Allen et al. (2012)
CEMP-r/s star?

Classification and origins of CEMP stars

- CEMP-s and CEMP-r/s stars:
s-process, high binary frequency, Li depletion
\rightarrow mass transfer from AGB stars in binary systems
- CEMP-no stars:

Common feature with C-normal stars: binary frequency, Li, heavy neutron-capture elements, etc.
a small fraction of CEMP-no stars show excess of alpha elements ... similar to some Hyper Metal-Poor stars?
\rightarrow Faint supernovae, and other origins?

