Multiple Stellar Populations in the **Globular Clusters** and **Milky Way Bulge**

Dongwook Lim Yonsei University, South Korea Research Fellow, NRF of Korea

Young-Wook Lee (Yonsei Univ.) Seungsoo Hong (Yonsei Univ.) Chul Chung (Yonsei Univ.) Seok-Joo Joo (KASI) **YONSEI**, Leading the Way to the Future

A Celebration of CEMP and Gala of GALAH, November 13-17 2017, Melbourne, Australia

Satellite galaxies

NGC 3521 Credit: ESO/O. Maliy

Globular Clusters with **Multiple Populations**

Danish 1.5m telescope

Hubble Space Telescope

To reach this stage

Low Resolution Spectroscopy

Low-Resolution Spectroscopy

The 2.5m Irénée du Pont Telescope at LCO, Chile

- Observations: June 2011 ~ June 2017
- Multi-object spectroscopy
- **WFCCD** (Wide Field Reimaging CCD camera)
- FOV ~ 25' x 25'
- HK grism
- Pixel scale ~ 0.484 "/pix
- Dispersion ~ 0.8 Å/pix
- Central wavelength ~ 3700Å
- RGB stars in 14 Milky Way GCs

du Pont 2.5m telescope

Spectral Indices (CN, CH & HK')

1. Multiple populations with different CN index

2. Multiple population with different HK' index (Ca)

 ✓ We find multiple stellar population with different Ca abundance in M22, NGC 1851, NGC 5286, and NGC 6273

3. CN-CH anti & positive correlation

- ✓ The origin of the CN-CH positive correlation appears to be explicitly relevant to the heavy element variations.
- ✓ The CN-CH positive correlation can be a useful probe for the GCs with heavy element variations.

Contribution of GCs to the Milky Way formation

Double Red Clumps in the Bulge (l, b) = (-1, -8)10 (l, b) = (0.27, -6.31)12 $\Delta A_{\rm v} = +1.0$ Ν 100 200 300 13 13 12 \mathbf{I}_{0} 14 OGLE 14х 15 15 14 16 16 0.5 1.5 1 2 OGLE (V-I) 16 0.4 0.6 0.8 OGLE (I, V-I) CMD (J-K) Nataf et al. 2015 2MASS (K, J-K) CMD McWilliam & Zoccali 2010

✓ The presence of double red clumps was discovered in the higher latitude fields of the Milky Way bulge from the wide-field photometric survey (e.g., 2MASS, OGLE).

X-Shaped Bulge Scenario (120+ papers)

Bright RC ⇒ foreground Faint RC ⇒ background

✓ The double RC is widely accepted as evidence for an X-shaped structure is originated from the disc and bar instabilities.

VVV survey - Wegg & Gerhard 2013

Multiple Populations Scenario

Lee et al. 2015; Joo et al. 2017

Bright RC \Rightarrow He-enhanced later generation stars (G2) Faint RC \Rightarrow He-normal earlier generation stars (G1)

 \checkmark In the metal-rich regime, He-rich HB stars are placed on the brighter RC.

 The double RC might be different manifestation of the multiple populations phenomenon in the metal-rich regimes.

Metal-rich Bulge Globular Cluster: Terzan 5

Origin of double RC in the Galactic Bulge

Schematic diagram

Low-resolution spectroscopy for Bulge field

WFCCD / du Pont 2.5m telescope @ LCO

Period	June 2016 ~ June 2017
Targets	RC & RGB stars (N=462)
Region	Galactic longitude (<i>l</i>): -1.5 ~ -0.5 Galactic latitude (<i>b</i>): -9.0 ~ -8.0

In the era of large survey

✓ A huge amount of survey data would provide a crucial test as to the origin of double RCs in the Milky Way bulge!

GALAH GALACTIC ARCHAEOLOGY WITH HERMES

high resolution spectra of one million stars for chemical tagging

spectra for 1,000,000 stars **Resolution** ~ 28,000 **Elements:** Li, C, **O**, **Na**, Al, K, Mg, Si, Ca, Ti, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Ce, Dy, and Eu

Target Selection |*b*|< 5 10 < V < 14

77% thin-disk 22% thick-disk **0.8% bulge** 0.2% halo

✓ GALAH survey will be useful to investigate stellar populations in the Milky Way, especially on the Na-O plane.

