Multiple Stellar Populations in the Globular Clusters and Milky Way Bulge

Dongwook Lim

Yonsei University, South Korea
Research Fellow, NRF of Korea

Young-Wook Lee (ronsei Univ)
Seungsoo Hong (Yonsei Univa) Chul Chung (Nonsei Univ) Seok-Joo Joo (KAS)

A Celebration of CEMP and Gala of GALAH, November 13-17 2017, Melboume, Australia

Formation and Evolution of Milky Way

Metal-poor star
Halo
(CEMP)

Bulge

Disk

Globular cluster

Satellite galaxies

Globular Clusters with Multiple Populations

To reach this stage

Low-Resolution Spectroscopy

The 2.5m Irénée du Pont Telescope at LCO, Chile

- Observations: June 2011 ~ June 2017
- Multi-object spectroscopy
- WFCCD (Wide Field Reimaging CCD camera)
- FOV ~ $25^{\prime} \times 25^{\prime}$
- HK grism
- Pixel scale ~ 0.484 "/pix
- Dispersion ~ $0.8 \AA /$ pix
- Central wavelength ~ $3700 \AA$
- RGB stars in 14 Milky Way GCs

du Pont $2.5 m$ telescope

Raw data

Spectral Indices (CN, CH \& HK')

Light element (CN \& CH)

$$
\begin{gathered}
S(3839)=-2.5 \log \frac{\int_{3861}^{3884} F_{\lambda}}{\int_{3894}^{3910} F_{\lambda}} \\
C H 4300=-2.5 \log \frac{\int_{4285}^{4315} F_{\lambda}}{0.5 \int_{4240}^{4280} F_{\lambda}+0.5 \int_{4390}^{4460} F_{\lambda}}
\end{gathered}
$$

(Norris \& Freeman 1979)

Heavy element (Calcium)
$H K^{\prime}=-2.5 \log \frac{\int_{3916}^{3985} F_{\lambda}}{2 \int_{3894}^{3911} F_{\lambda}+\int_{3990}^{4025} F_{\lambda}}$
(Lim et al. 2015)

Delta (δ) Index

$$
\text { Absorption line }=\text { Abundance }+\mathrm{T}_{\text {eff }}+\text { Surface Gravity }
$$

- We calculated delta indices $\left(\mathbf{\delta C N}, \boldsymbol{\delta} \mathbf{H K}^{\prime}\right.$, and $\left.\boldsymbol{\delta C H}\right)$ as the difference between original values and least square fitting lines to minimize the effect of effective temperature and surface gravity.

Norris \& Freeman 1983

$\delta A(C a)$ index

1. Multiple populations with different CN index

NGC 288

NGC 6266

NGC 6723

\checkmark We find multiple stellar population with different CN index in every target GCs, except NGC 6397.

2. Multiple population with different HK^{\prime} index (Ca)

NGC 1851

NGC 5286

NGC 6273

\checkmark We find multiple stellar population with different Ca abundance in M22, NGC 1851, NGC 5286, and NGC 6273

3. CN-CH anti \& positive correlation

Light elements variation only
Light \& Heavy elements variations

```
NGC 288,NGC 362, NGC 6266, I NGC 1851 M I NG2, NGC 5286, NGC }627
NGC 6723, and etc.
```

\checkmark The origin of the $\mathrm{CN}-\mathrm{CH}$ positive correlation appears to be explicitly relevant to the heavy element variations.
\checkmark The CN-CH positive correlation can be a useful probe for the GCs with heavy element variations.

Contribution of GCs to the Milky Way formation

SDSS-III/SEGUE-2 Spectra
Martell et al. 2011

Chemical tagging with APOGEE Schiavon et al. 2017

CN-strong / CH-weak stars
Originate from
Globular Cluster

Double Red Clumps in the Bulge

Nataf et al. 2015
2MASS ($К, J-\kappa$) CMD
McWilliam \& Zoccali 2010
\checkmark The presence of double red clumps was discovered in the higher latitude fields of the Milky Way bulge from the wide-field photometric survey (e.g., 2MASS, OGLE).

X-Shaped Bulge Scenario (120+ papers)

Bright RC \Rightarrow foreground Faint RC \Rightarrow background
\checkmark The double RC is widely accepted as evidence for an X-shaped structure is originated from the disc and bar instabilities.

Multiple Populations Scenario

Lee et al. 2015; Joo et al. 2017

Bright $\mathrm{RC} \Rightarrow$ He-enhanced later generation stars (G2)
Faint RC \Rightarrow He-normal earlier generation stars (G1)
\checkmark In the metal-rich regime, He-rich HB stars are placed on the brighter RC.
\checkmark The double RC might be different manifestation of the multiple populations phenomenon in the metal-rich regimes.

Metal-rich Bulge Globular Cluster: Terzan 5

Ferraro et al. 2009
Age difference and/or
He difference
Lee et al. 2015
Synthetic CMDs for Terzan 5 and Bulge

Origin of double RC in the Galactic Bulge

Schematic diagram

X-bulge scenario

Low-resolution spectroscopy for Bulge field

WFCCD / du Pont 2.5m telescope @ LCO

Faint RC (221)
Bright RC (149)
RGB (92)

$$
\begin{aligned}
& 13.0<\mathrm{K}_{\text {mag }}<13.85 \\
& 12.15<\mathrm{K}_{\text {mag }}<13.0 \\
& \mathrm{~K}_{\text {mag }}<12.15 / 13.85<\mathrm{K}_{\text {mag }}
\end{aligned}
$$

Telescope	du Pont 2.5m @ LCO
Instrument	WFCCD
Period	June 2016 ~ June 2017
Targets	RC \& RGB stars ($\mathrm{N}=462$)
Region	Galactic longitude $(\mathrm{N}):-1.5 \sim-0.5$ Galactic latitude $(b):-9.0 \sim-8.0$

CN index distribution

G1 (Faint RC) / G2 (Bright RC) / RGB

\square
Bright RC stars are more enhanced than faint RC stars in CN band strength!

Evidence for the multiple population scenario in bulge!

Proto-GCs were major building blocks in the classical bulge formation!

In the era of large survey

\checkmark A huge amount of survey data would provide a crucial test as to the origin of double RCs in the Milky Way bulge!

GALAH

high resolution spectra of one million stars for chemical tagging
spectra for 1,000,000 stars
Resolution ~ 28,000
Elements: Li, C, O, Na, Al, K, Mg, Si, Ca, Ti, Sc, V, Cr, Mn, $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Y}, \mathrm{Zr}, \mathrm{Ba}, \mathrm{La}, \mathrm{Nd}, \mathrm{Ce}, \mathrm{Dy}$, and Eu

2MASS, \mid bl<5, $10<\mathrm{V}<14$ $\log (\rho)$ stars $/\left(\pi \operatorname{deg}^{2}\right)$

Target Selection
$|b|<5 \quad 10<\mathrm{V}<14$
77\% thin-disk 22\% thick-disk 0.8\% bulge 0.2\% halo
\checkmark GALAH survey will be useful to investigate stellar populations in the Milky Way, especially on the $\mathbf{N a}-\mathrm{O}$ plane.

