Formation Condition and Classification of Extremely Metal-Poor Stars: Absent Region in the A(C)-[Fe/H] Plane

Gen Chiaki (Georgia Tech)

Nozomu Tominaga (Konan) Takaya Nozawa (NAOJ)

KONAN INFINITY

Chiaki, Tominaga, & Nozawa (2018, MNRAS, 472, L115) arXiv: 1710.04365

Sub-groups of CEMP stars

Yoon et al. (2016)

Sub-groups of CEMP stars

Yoon et al. (2016)

Sub-groups of CEMP stars

Yoon et al. (2016)

CEMP-no stars

✓ mainly in [Fe/H]<-3

✓ consist of Groups II and III

✓ And what is the physical origin of the discrimination of Groups II and III?

Our findings (1/3)

✓ Group III stars show large C-enhancement ([C/Fe] > 2)
✓ Group II stars show moderate C-enhancement ([C/Fe] < 2)

Our findings (2/3)

✓ The distribution of Group II appears to continuously connect with that of C-normal stars.

Our findings (3/3)

✓ Stars with large C-enhancement show lower limit of $A_{cr}(C)$ ~6

✓ Stars with moderate C-enhancement show lower limit of $[Fe/H]_{cr} \sim -5$

First, we focus on the lower-limits of A(C) & [Fe/H]

The lower-limits reflect dust amounts required for cloud fragmentation

(Omukai 2000; Schneider et al. 2003; Dopcke et al. 2011, 2013; Bromm et al. 2014; Safranek-Shrader 2014, 2016)

For the formation of Cenhanced/normal EMP stars, carbon/silicate grains are important

Interestingly,

✓ For Group III star formation, carbon grains are dominant.

✓ For Group II and C-normal star formation, silicate are dominant.

So, let's estimate the boundary dividing EMP stars into two classes

The condition established on this boundary is Carbon Brain cooling efficiency - Silicate Brain cooling efficiency 9 Carbon grain rich 8 A(C) Cloud fragmentation to form low-mass stars by carbon grains 6 Silicate grain rich 5 lack of both . $> \bigstar$ 4 single massive star Cloud fragmentation to form low-mass stars by silicate grains -7 -5 -9 0 -6 [Fe/H]

We need estimate the carbon and silicate grain cooling efficiency

To estimate the cooling efficiencies, we need dust properties: ✓ condensation efficiency of metal into dust ✓ dust size

To estimate the cooling efficiencies, we need dust properties: ✓ condensation efficiency of metal into dust ✓ dust size

Larger condensation efficiency \rightarrow Larger cooling efficiency

To estimate the cooling efficiencies, we need dust properties: ✓ condensation efficiency of metal into dust ✓ dust size

Smaller dust size \rightarrow Larger cooling efficiency

How can we determine these dust properties in the early Universe?

✓ Direct measurement.

 \rightarrow Too hard to directly measure them by observations.

✓ Earlier studies estimate them by theoretical models. (Schneider et al. 2006; Chiaki et al. 2013, 2014, 2015; Marassi et al. 2014, 2015) →Model dependent...

So, we here present a new way to estimate the dust properties.

On the critical lines, energy balance equations are established dust cooling rate Λ_{dust} = gas compressional heating Γ_{comp}

Energy balance equation on the critical lines

Energy balance equation on the critical lines

 $\frac{3\mu_{\text{dust}} X_{\text{H}}}{4\varsigma_{\text{dust}} r_{\text{dust}}/f_{\text{dust}\leftarrow\text{metal}}} y_{\text{metal}} = 1.4 \times 10^{-2} \text{ g cm}^{-1}$

We can estimate grain size / condensation efficiency as

$$\begin{cases} r_{\text{carbon}} / f_{\text{carbon}\leftarrow \text{C}} \sim 10 \,\mu\text{m} \\ r_{\text{silicate}} / f_{\text{silicate}\leftarrow \text{Mg}} \sim 0.1 \,\mu\text{m} \end{cases}$$

We consider that they are valid for all EMP stars.

We can reconstruct the critical lines with these dust properties.

In general, both carbon and silicate grains contribute to gas cooling. Therefore,

 $\frac{3\mu_{\text{carbon}} X_{\text{H}}}{4\zeta_{\text{carbon}} r_{\text{carbon}}^{\text{cool}} / f_{\text{carbon}\leftarrow\text{C}}} y_{\text{C}} + \frac{3\mu_{\text{silicate}} X_{\text{H}}}{4\zeta_{\text{silicate}} r_{\text{silicate}} / f_{\text{silicate}\leftarrow\text{Mg}}} y_{\text{Mg}} = 1.4 \times 10^{-2} \text{ g cm}^{-1}$

We can reconstruct the critical lines with these dust properties.

In general, both carbon and silicate grains contribute to gas cooling. Therefore,

We can reconstruct the critical lines with these dust properties.

In general, both carbon and silicate grains contribute to gas cooling. Therefore,

Finally, the boundary of two regions with carbon and silicate is

A_{cr}(C) & [Fe/H]_{cr} suggest the larger carbon grains than silicate

 $\begin{cases} r_{\text{carbon}} / f_{\text{carbon} \leftarrow \text{C}} \sim 10 \,\mu\text{m} \\ r_{\text{silicate}} / f_{\text{silicate} \leftarrow \text{Mg}} \sim 0.1 \,\mu\text{m} \end{cases}$

We confirm it from a model calculation.

•Dust grains in the early universe are mainly supplied by supernovae (SNe) of first (Pop III) stars (Todini & Ferrara 2001).

•We calculate condensation of metals in an expanding ejecta.

 •1D hydrodynamics calculation
✓ Radiative transfer
✓ energy deposition of ⁵⁶Ni decay (Iwamoto et al. 2000)

SN models

The model predicts larger carbon grains than silicate!

Summery

•We reconsider the classification of EMP stars from a theoretical point of view

✓ Stars formed through cloud fragmentation induced by carbon grains ([C/Fe]≥2)
✓ Stars formed through cloud fragmentation induced by silicate grains ([C/Fe]≤2)

•From the critical abundances $A_{cr}(C)$ and $[Fe/H]_{cr}$, we derive the dust properties in EMP star-forming clouds as

 $\checkmark r_{\text{carbon}} / f_{\text{carbon} \leftarrow \text{C}} \sim 10 \,\mu\text{m}$ $\checkmark r_{\text{silicate}} / f_{\text{silicate} \leftarrow \text{Mg}} \sim 0.1 \,\mu\text{m}$

•Using the dust properties, we reconstruct the critical condition for low-mass EMP star formation as $\sqrt{10^{[C/H]-2.30}+10^{[Fe/H]}} = -5.07$

•The boundary of two classes is estimated as [C/Fe] = 2.30

