The GALAH Survey Chemical tagging of co-moving stellar pairs

Australian Astronomical Observatory

Jeffrey Simpson and the GALAH collaboration

GALAH

GALAH GALactic Archaeology with HERMES

One million stars

29 elements

Chemical tagging

Co-moving stellar pairs

- About 50% of all main-sequence stars are in binary systems of varying separations
- There is a population of very wide separation binaries (>1 pc)
- Some(? Many?) wide binaries are lost of single-age stellar clusters and could be used as a probe of cluster dissolution
- They could be a floor in our ability to chemically tag stars

Duchêne & Kraus (2013; ARAA, 51, 1)

Different routes to "same" answer

Find **chemically**-similar stars and then see which are **kinematically**-similar Find **kinematically**-similar stars and then see which are **chemically**-similar

"Science with 1.5 billion objects in three dimensions"

5616

→ GAIA'S FIRST SKY MAP

THE ASTRONOMICAL JOURNAL

Comoving Stars in *Gaia* DR1: An Abundance of Very Wi Comoving Pairs

Semyeong Oh¹, Adrian M. Price-Whelan¹ (D), David W. Hogg^{2,3,4} (D), Timothy D. Morton¹, and David N. Spergel^{1,4} Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved. THE A The Astronomical Journal, Volume 153, Number 6

Wide binaries in Tycho-Gaia: search method and the distribution of orbital separations

Jeff J. Andrews 🖾, Julio Chanamé, Marcel A. Agüeros

Monthly Notices of the Royal Astronomical Society, Volume 472, Issue 1, 21 November 2017, Pages 675–699, https://doi.org/10.1093/mnras/stx2000

Published: 04 August 2017 Article history •

THE ASTRONOMICAL JOURNAL

Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

Ryan J. Oelkers¹ (D), Keivan G. Stassun^{1,2} (D), and Saurav Dhital¹ Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 153, Number 6

THE ASTRONOMICAL JOURNAL

Comoving Stars in *Gaia* DR1: An Abundance of Very Wide Separation Comoving Pairs

Semyeong Oh¹, Adrian M. Price-Whelan¹ (D, David W. Hogg^{2,3,4} (D, Timothy D. Morton¹, and David N. Spergel^{1,4} Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 153, Number 6

- Considered all pairs of stars within 10 parsecs of each other
- Identified those with high probability of being comoving from the proper motions
- 10000 possible groups of co-moving stars

 29 groups have been observed by GALAH

Key test: recovery of known clusters

Oh+2017 is able to recover known clusters, e.g., Pleaides

But they lack radial velocities (and abundances)

Combining the TGAS results with GALAH RVs gives us believable orbits for the known clusters

8/29 groups were false positives

Travelling off in different directions

The thing we're here for: the real co-moving pairs

Abundances!

Abundances!

(the raison d'être of GALAH)

GALAH abundance results from the known clusters

How do the abundances look for the 'real' pairs?

Co-moving pairs of stars are **an important test chemical tagging**

Showing that these co-moving pairs are more similar chemically than a random pair is the next step

