The GALAH Survey
 Chemical tagging of co-moving stellar pairs

Jeffrey Simpson

and the GALAH collaboration

Australian Astronomical Observatory

GALAH

GALactic Archaeology with HERMES

One million stars

29 elements

Chemical tagging

Co-moving

pairs

Co-moving stellar pairs

- About 50\% of all main-sequence stars are in binary systems of varying separations
- There is a population of very wide separation binaries (>1 pc)
- Some(? Many?) wide binaries are lost of single-age stellar clusters and could be used as a probe of cluster dissolution
- They could be a floor in our ability to chemically tag stars

[^0]
Different routes to "same" answer

Find chemically-similar stars and then see which are kinematically-similar

Find kinematically-similar stars and then see which are chemically-similar

\rightarrow GAIA'S FIRST SKY MAP

Wide binaries in Tycho-Gaia: search method and the distribution of orbital separations

Jeff J. Andrews ©, Julio Chanamé, Marcel A. Agüeros
Monthly Notices of the Royal Astronomical Society, Volume 472, Issue 1, 21 November 2017, Pages 675-699,
https://doi.org/10.1093/mnras/stx2000
THE ASTRONOMICALJOURNAL

Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation
Comoving Pairs
Semyeong Oh^{1}, Adrian M. Price-Whelan ${ }^{1}$ (D), David W. $\mathrm{Hogg}^{2,3,4}$ (D), Timothy D. Morton ${ }^{1}$, and
David N. Spergel ${ }^{1,4}$
Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved.
THE ASTRONOMICALJOURNAL
The Astronomical Journal, Volume 153, Number 6

Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES
(GAMBLES): Identifying Ultra-wide Binary Pairs with Components of
Diverse Mass
Ryan J. Oelkers ${ }^{1}$ (D), Keivan G. Stassun ${ }^{1,2}$ (D), and Saurav Dhital ${ }^{1}$
Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved.
The Astronomical Journal, Volume 153, Number 6

- Considered all pairs of stars within 10 parsecs of each other
- Identified those with high

Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation Comoving Pairs
Semyeong Oh^{1}, Adrian M. Price-Whelan ${ }^{1}$ (D), David W. $\operatorname{Hogg}^{2,3,4}$ (D), Timothy D. Morton ${ }^{1}$, and
David N. Spergel ${ }^{1,4}$
Published 2017 May 19 • © 2017. The American Astronomical Society. All rights reserved.
The Astronomical Journal, Volume 153, Number 6
probability of being comoving from the proper motions

- 10000 possible groups of co-moving stars
- 29 groups have been observed by GALAH

Key test: recovery of known clusters

Oh+2017 is able to recover known clusters, e.g., Pleaides

But they lack radial velocities

 (and abundances)

Combining the TGAS results with GALAH RVs gives us believable orbits for the known clusters

8/29 groups were false positives

The thing we're here for: the real co-moving pairs

Abundances!

Abundances!

(the raison d'être of GALAH)

GALAH abundance results from the known clusters

How do the abundances look for the 'real' pairs?

Co-moving pairs of stars are

 an important test chemical tagging| [Fe / H]
 9140 stars | [AI/H]
 odd Z
 6308 stars |
| :---: | :---: |
| | |
| [Ni / H]
 Fe peak | [Sc/H] Fe peak |

Showing that these co-moving pairs are more similar chemically than a random pair is the next step

[^0]: Duchêne \& Kraus (2013; ARAA, 51, 1)

