MASS AND ANGULAR MOMENTUM ACCRETION IN CEMP-S STARS

WITH THANKS TO...

Zhengwei Liu

Carlo Abate

FORMATION MECHANISM

MASS TRANSFER

- Typically assume Bondi-Hoyle accretion from wind
- But AGB winds are slow (10 km/s)
- For wide binaries, the orbital speed is similar
- Accretion is not so simple...
- Need hydro to help!

Mohamed & Podsiadlowski (2007)

Liu et al. (2017)

CAVEATS

- Simulations are still pretty basic
- Isothermal gas leads to accretion disc
 - Consistent with others (Chen et al. 2017, Saladino et al., in prep)
- More sophisticated treatment of winds needed

Dust acceleration radius, R_d is key

If this lies outside the Roche Lobe efficient mass transfer can occur

Wind Roche Lobe Overflow

Could be about 5 times as efficient as Bondi Hoyle wind accretion

Needs to be followed up with detailed sweep of binary configurations

ANGULAR MOMENTUM LIMITS ACCRETION

How much mass can be accreted before critical rotation is reached?

We want to make secondaries around 0.85Msun

Too much AM is a problem!

Matrozis, Abate & Stancliffe (2017)

0.75 Msun + 0.05 Msun

Initially spin up outer layers

Too much AM and we hit critical rotation during accretion

Transport some AM into the interior

CEMP-s rotate at 5-10 km/s

FATE OF ACCRETED MATERIAL

FATE OF ACCRETED MATERIAL II

Matrozis & Stancliffe (2017)

Matrozis & Stancliffe (2017)

Matrozis & Stancliffe (2017)

CONCLUSIONS

- Mass transfer via stellar winds is complicated
- Hydro simulations are extremely useful!
 - Still lots need to be done

Too much angular momentum reaches the secondary!
Can't accrete enough mass before critical rotation

Rotation may affect surface abundances

Inhibits settling, may cause mixing