Following the Pristine Gas: The Pop III/II transition JINA-CEE - Gala of GALAH RICK SARMENTO 16NOV 2017

Evan Scannapieco, Liubin Pan, Seth Cohen

Motivation

Understand & characterize the transition from Pop III to Pop II star formation

► No Pop III stars observations!

Near-field cosmology/Stellar archeology... & simulation

- ▶ Pop III Progenitors of the first metals
- Link elemental abundances in Carbon-Enhanced Metal-Poor (CEMP-no) stars to Pop III progenitor
- Characteristic mass, IMF

► Sneak-peek? (CEMP-r)

Cosmological simulations

Simulating a chunk of the universe...

Self-gravitating fluid dynamics with AMR

- Cells model the gas
- Particles model stars and DM
- ► Star (particle) formation
- Supernova feedback
- Setup
 - ▶ $(17 \text{ Mpc})^3$, $1024^3 \text{ cells} \rightarrow 16 \text{ kpc}$ init grid resolution
 - ▶ 65 pc resolution (cmv)
 - ► $M_{DM} = 5.59 \times 10^5 M_{\odot}$, 10° DM particles
 - ▶ $3.2 \times 10^3 < M_{SP}/M_{\odot} < 6.3 \times 10^4 each SP$ is an IMF of stars
 - ► $Z_{crit} = 10^{-5} Z_{\odot}$

440,000 CPU-hours → z=6.6

Refine cells as they become over-dense

50 CPU-years

Projected Density & Z

The Story to date...

Understanding the first stars means understanding the physics that created them, how they died, and how their DNA made its way into the second generation of stars (that we can see).

Modeling Considerations

Critical metallicity

 \blacktriangleright Z > Z_{crit}

Mixing of metals in the ISM

- SN rate & ejecta (metal) mass
- Gravity
- Hydrodynamic flow

Additional Factor - Small Scale Mixing Typically a problem in cosmo sims... scale disparity ~10⁶

Mixing...

Pan, ES, & Scalo (2012)

Pan, ES, & Scalo (2013)

Corrected Metallicity

$$Z \equiv \frac{\overline{Z}}{f_{\rm pol}},$$

Identifying CEMP-no stars

Normal stars...

Knowing Z isn't enough ... How to identify stars that are polluted with ONLY Pop III ejecta?

Track 2 kinds of metals...

Elemental yields from Pop III SN vs Pop II

- CEMP abundances likely due to subset of Pop III SN
- Ratio, in each star particle, is important for understanding the final chemical composition stars

▶ $\frac{Z_P}{7} \cong 1 \rightarrow CEMP-no$

Timmes, 2015, Heger, StarFit 2016

Chemical composition...

Sarmento et al., 2017a

Compare to Observations

Yoon et al. 2016 Heger (StarFit) 2016, Timmes, 2016

Sarmento et al., 2017b

Summary

Inexpensively track fraction of pristine gas at subgrid scales

- Improved Pop III SFRD model
- Efficiently track two kinds of pollutants with different characteristics -
 - Far less cost than following detailed chemical evolution still evaluate specific yield models
 - Quickly determine which progenitor models show promise wrt observations.
 - Need large Fe to C spread to explain observations... of lowest Z CEMP-no stars

Future work –

- Parameter study
 - ► SN energy, SN energy partition, SN mass loading, Z_{crit}
- What else could produce those abundances? (Spin stars, Low-mass Pop III companion, etc.)

Following the r-process enhancement of the IS/GM

$20-100 M_{\odot}$ IMF progenitors

Heger & Woolsey, 08

Final chemical composition

Umeda & Nomoto, 2003

$$\begin{aligned} \tau_{\rm con} &= \frac{\Delta x}{v_t} \begin{cases} \tilde{\tau}_{\rm con1} & \text{if } P \ge 0.9\\ \tilde{\tau}_{\rm con2} & \text{if } P < 0.9 \end{cases}, \\ \\ \tilde{\tau}_{\rm con1} &= \left[0.225 - 0.055 \exp\left(-\frac{M^{3/2}}{4}\right) \right] \sqrt{\frac{x}{5} + 1}, \\ \\ \tilde{\tau}_{\rm con2} &= \left[0.335 - 0.095 \exp\left(-\frac{M^2}{4}\right) \right] \sqrt{\frac{x}{3} + 1}, \end{cases} \\ \\ \\ x &\equiv -\log_{10}\left(\frac{\overline{Z}}{10^7 Z_{\rm crit}}\right) \left[\log_{10}\left(\frac{\overline{Z}}{Z_{\rm crit}}\right) \right]^{-1} \\ \\ \\ v_t &= \left| S_{ij} \right| \ \Delta x. \end{aligned}$$

Galaxy Mass-Metallicity

