Signatures of Peculiar Supernova Nucleosynthesis in Extremely *a*-enhanced Stars

Hye-Eun Jang¹, Sung-Chul Yoon^{1,2}, Young Sun Lee³, Ho-Gyu Lee⁴, Wonseok Kang⁵ and Sang-Gak Lee¹

¹ Seoul National University, ² Monash University, ³ Chungnam National University, ⁴ Korea Astronomy and Space Science Institute, ⁵ National Youth Space Center

Image: Solar fluxatlas2005 by R. L. Kurucz

Abstract

We have performed a spectroscopic study on several extremely alpha-enhanced stars having [Fe/H] \sim -1. The data were obtained with the GRACES (R \sim 40000) of the GEMINI 8m telescope. We find that O, Mg, Ca, Ti, V abundances are anomalously high in some of our sample, compared to core-collapse model predictions and those of other field stars of similar metallicity. For example, our program stars have strong enhancement of titanium ([Ti/Fe] = 0.9), calcium (0.69) and vanadium (0.9), compared to [X/Fe] ~ 0.3 for most stars with similar iron abundances. Plus, some stars have strong oxygen enhancement ([O/Fe] > 0.7), which is not usual for $[Fe] \sim -1$ stars. We compared our results to the observed abundance patterns of VMP stars ([Fe] < -2, Cayrel et al., 2004). Overabundances of alpha-elements except for silicon compared to the case of the Cayrel sample are clearly shown. We discuss implications of our finding for nucleosynthesis.

I. Introduction

Galactic metal-poor stars with [Fe/H] < -1

- Old stars that were formed 10 Gyrs ago
- Mostly enriched by core-collase SNe (CCSNe) of massive stars.

α -elements and chemical evolution of the Galaxy

- Forms plateau at [Fe] < -1 due to CCSN enrichment in the early universe, and gradually decreases by iron contribution of Type la supernova. (Timmes+, 1995)
- Strong α-enhancement above plateau may imply exotic environment of early nucleosynthesis of α - elements (e.g. PISN, Fall-back SN; Nomoto+, 2013)

II. Observation

Target selection

• To find such signature of the early universe, we choose stars with <u>high Mg to Fe ratio</u> from the SEGUE database. (abundance & stellar parameters derived by Lee+, 2008) + FGK type, main-sequence (log g > 4), g < 16

IV. Results & Discussion

Summary of stellar parameters & element abundance ratios [X/Fe] of program stars

Total # of lines for each star ~ 200

										<i>,</i> L							
		[Fe/H]	T_eff	Log g	V_t	V_r	Ο	Na	Mg	AI	Si	Ca	Sc	Ti	V	Cr	Mn
	N1	-1.38	5130	4.5	1.5	+50.6	-	-0.03	0.43	0.22	0.16	0.43	0.01	0.43	0.59	0.17	-0.18
	N3	-1.30	5450	4.4	1.5	-36.0	0.29	-0.12	0.47	0.43	0.35	0.34	0.11	0.33	0.34	0.00	-0.19
	N4	-1.00	5120	3.0	1.1	-68.6	0.54	-0.04	0.47	0.20	0.25	0.36	0.25	0.25	0.21	0.08	-0.03
	N5	-1.36	5000	4.8	0.7	-166	-	-0.15	0.48	0.18	0.14	0.25	0.30	0.40	0.40	0.09	-0.26
	N6	-1.39	5930	4.3	1.1	-371	0.48	-0.14	0.41	-	0.21	0.23	0.10	0.33	-	0.28	-0.36
	N7	-1.34	5480	4.5	0.9	-105	0.75	-0.18	0.48	-	0.32	0.25	0.09	0.30	-	0.18	-0.17
	N8	-1.38	5070	3.8	2.2	-336	-	0.26	0.45	0.32	-0.17	0.82	-0.24	0.69	0.90	0.30	0.02
VMP stars (Cayrel+, 2004)							-	-0.63	0.21	-0.12	0.42	0.27	0.04	0.20	-	-0.42	-0.44

‡ Typical error of e[Fe/H] ~ 0.01, e(T_eff) ~ 20, e(Log g) ~ 0.1 and e(V_t) ~ 0.05

+ T eff : effective temperature [K], V t : turbulent velocity [km/s], V r : radial velocity [km/s]

✓ N7 shows high oxygen abundance [O/Fe] > 0.7

- \checkmark For the case of α -elements, [Mg/Fe] and [Ca/Fe] are large while [Si/Fe] is relatively small.
- ✓ N8 has very high [Ca/Fe], [Ti/Fe] and [V/Fe] ratio along with relatively strong [Mn/Fe], which makes the star different from normal galactic stars. This implies some peculiar types of SN contribution.

<u>Comparison of our stars and SAGA database</u>

✓ N1 & N8 : Overabundance of Ca, Ti and V &

Observation

- *Gemini* North 8.2m telescope + *CHFT ESPaDOnS* Echelle Spectrograph (GRACES)
- Wavelength coverage: 4,000-10,000A
- Resolution: 40,000 (star+sky mode)
- S/N ratio: 50 (4500A) to 100 (10000A)

Data reduction

DRAGRACES + some IDL Procedures written by authors

III. Abundance Analysis

Equivalent width estimation

deficient of Si are clearly shown.

Dashed line: abundance avg. of galactic stars with -1.5 < [Fe] < -1 from SAGA database (The shaded area represents the standard deviation.)

Error bar (upper left): typical error of abundii) ance ratios

Element abundance of N8 and Implication on SN nucleosynthesis

- High [Mg/Fe], [Ca/Fe], [Ti/Fe], [V/Fe], [Mn/Fe], and relatively low [Si/Fe]
- It may indicate the influence of helium detonation in accreting white dwarfs (Waldman et al. 2011) or Ca-rich CCSN (e.g., Gvaramadze+2017)

V. Summary & Conclusion

Summary of results

- We took spectroscopic observation of 7 magnesium-enhanced galactic MP stars selected from SEGUE database. We find some of our stars show strong Ca and Ti enhancement compared to Si.
- Using IDL-based code TAME (Kang & Lee, 2012)

Abundance analysis

- Kurucz (α-enhanced) atmosphere model (Castelli & Kurucz, 2004) + MOOG (Sneden, 1973)
- Parameter estimation using Fe I & II lines (e.g. N1)

- We find that some of our sample have overabundances of Mn and V compared to other galactic stars. This abundance pattern cannot be explained by chemical evolution model from CCSN and Type-Ia SN nucleosynthesis.
- Helium detonation or Ca-rich CCSN model could be a possible explanation of our result.

Possibility of overestimation

Abundance values of saturated lines are sensitive to turbulent velocity. A low S/N ratio of spectra may cause selection bias toward strong lines. This can cause an overestimate of turbulent velocity and line abundance.

References

- *Cayrel, R., et al., 2004, A&A, 416, 1117*
- Gvaramadze, V., et al., 2017, Nature Astronomy, 1, 116
- Kang, W., and Lee., S.-G., 2012, MNRAS, 425, 3162
- Lee., Y. S., et al., 2008, ApJ, 136, 5

- Nomoto, K., Kobayashi, C., Tominaga, N., 2013, ARAA, 51, 457
- Timmes, F. X., Woosley, S. E., and Weaver, T. A., 1995, ApJS, 98, 617
- Waldman, R., et al., 2011, ApJ, 738, 21