Galah and asteroseismology

Dennis Stello

The asteroseismic revolution

figure by Daniel Huber

6000

Effective Temperature (K)

Early results from Kepler

Photometry

APOGEE Red Giants/original Kepler field

Early results from Kepler

Snapping into focus

Pinsonneault et al. 2016

APOGEE Red Giants/original Kepler field

Early results from Kepler

Snapping into focus

Pinsonneault et al. 2016

APOGEE Red Giants/original Kepler field

A short introduction to cool-star asteroseismology

Asteroseismology of cool stars

Excitation of solar-like oscillations

Excitation of solar-like oscillations

Miso soup

Excitation of solar-like oscillations

Standing sound waves (p modes)

Observing oscillation modes

How we do it!

How we do it!

What can we measure?

Ages of main sequence stars

But there is more

• Individual mode fitting (or frequency ratios):

- <u>Main sequence</u>: ~3% (best, Metcalfe 2015), 5-15% (typical, Metcalfe 2014, Silva Aguirre 2015).
- <u>Subgiants</u>: ~1% (best, Metcalfe 2010), ~3% (typical, Deheuvels & Michel 2011).
- <u>Red giants</u>: < 15%(?) (very time consuming)
- $\Delta v + v_{max}$ (at least one scaling relation):
 - <u>Main sequence</u>: ~15% 25% (Chaplin 2014).
 - <u>Subgiants</u>: ~15% 25% (Chaplin 2014).
 - <u>Red giants</u>: ~15 30% (Casagrande 2014).

Ages of red giants

Back to the revolution...what have we learned so far!

Evolution of frequency spectra

Evolution of frequency spectra

Problem!!!

LETTER

Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

Timothy R. Bedding¹, Benoit Mosser², Daniel Huber¹, Josefina Montalbán³, Paul Beck⁴, Jørgen Christensen-Dalsgaard⁵, Yvonne P. Elsworth⁶, Rafael A. García⁷, Andrea Miglio^{3,6}, Dennis Stello¹, Timothy R. White¹, Joris De Ridder⁴, Saskia Hekker^{6,8},

RGB/RC stars: seismically different

Ages of red giants

Other breakthroughs!!!

Magnetic green house effect

Fuller et al. 2015 (Science)

Stellar inclinations: Do cluster stars'

spin align?

Corsaro et al. 2017 (NatureCom)

Radial differential rotation and angular momentum transport

Beck et al. 2012 (Nature) Mosser et al. 2012 (A&A)

A prevalence of convective core dynamos

Stello et al. 2016 (Nature)

Ensemble seismology: Probing the structure and evolution of the Milky Way

Stellar halo

Stellar disk(s)

Hippoarcos + Copenhagen-Geneva Survey

Asteroseismic probes of the Galaxy

Early results from Kepler and CoRoT

Differential comparison between two fields/populations

Early results from Kepler and CoRoT

Direct comparison with Galaxy model

Early results from Kepler and CoRoT

selection effects

OR because our galactic model is inadequate?

Extremely important to understand. Otherwise we can not expect to make useful comparisons!

-20000 -15000 -10000 -5000 0 x (pc)

K2: The concept

K2: A new opportunity for Galactic Archaeology

Each campaign field: 10-30K stars observed for ~80 days

The thrust: Use seismology of red giants (K2) combined with T_{eff} and [Fe/H] (ground-based) to probe the structure of the Milky Way

PI: Dennis Stello, Cols: Derek Buzasi, Ken Freeman, Savita Mathur, Andrea Miglio, Sanjib Sharma, Marc Pinsonneault, Collaborators: Friedrich Anders, Borja Anguiano, Martin Asplund, Sarbani Basu, Paul Beck, Othman Benomar, Maria Bergemann, Joss Bland-Hawthorn, Tiago Campante, Luca Casagrande, Peter De Cat, Márcio Catelan, Bill Chaplin, Cristina Chiappini, Enrico Corsaro, Orlagh Creevey, Eric Depagne, Patrick Eggenberger, Yvonne Elsworth, Jianning Fu, Rafael A. Garcia, Leo Girardi, Jennifer Johnson, Ulrike Heiter, Saskia Hekker, Paola Marigo, Eric Michel, Annie Robin, Maurizio Salaris, Victor Silva Aguirre, Marica Valentini (+ many more)

K2 GAP targets so far

Data download of seismic results:

K2 GAP site: www.physics.usyd.edu.au/k2gap/ **MAST**: https://archive.stsci.edu/prepds/k2gap/

End of mission (C0-C19): ~30-40k giants with seismic results

K2 GAP targets so far

N _{targets}	
452	
8629	
5138	
3904	>
6357	acit
9828	apá
8312	С С
4363	X
6185	ota
?	f to
8947	0 %
4544	50°
14014	ő
5974	Ĩ
7135	
7625	
10672	
	N _{targets} 452 8629 5138 3904 6357 9828 8312 4363 6185 ? 8947 4544 14014 5974 5974 7135 7625 10672

Ground-based spectroscopy/photometry (*T*_{eff}, [Fe/H], Abundances)

End of mission (C0-C19): ~30-40k giants with seismic results

HERMES: A multi-object high-resolution spectrograph on the 4-m AAT (Australia). R=28,000, 350 stars per exposure (2 degree field).

K2-HERMES: Aims to obtain spectra of all stars selected by the `K2 GAP' in the range 9 < V < 15 (within 1 degree of the centres of the K2 CCD modules).

K2-HERMES Status

K2-HERMES Status

Reminder: What we want to address!

Is this mismatch because of unknown selection effects OR because our galactic model is inadequate? Extremely important to understand. Otherwise we can not expect to make useful comparisons!

K2-HERMES results!

Comparison with Galaxia & K2-HERMES

New Galaxia model: Increased thick disk metallicity

Comparison with Galaxia & K2-HERMES

Comparison with Galaxia & K2-HERMES

TESS: 2018-2020+

Large Area Survey of Bright Stars

- F, G, K stars: +4 to +12 magnitude
- "All sky" observations in 2 years:
 - > 200,000 target stars at <2 min cadence
 - > 20,000,000 stars in full frames at 30 min cadence

~0.5-1.0 mio oscillating red giants

TESS-HERMES Survey

Deep Learning Classification in Asteroseismology

Al-based classification on K2/TESS

Next up: Detection or not?

Input 2D image

Activation layers

Summary

K2

Can we make meaningful comparisons between data and Galaxy models?

It seems K2/Galah can show a path towards meaningful comparisons.

TESS

Kepler

RGB/RC classifications works on TESS data; an important step for obtaining precise masses and ages!

