Supernova nucleosynthesis and extremely metal-poor stars Nozomu Tominaga (Konan University/Kavli IPMU)

KONAN UNIVERSITY

15th Nov 2017 A Celebration of CEMP and a Gala of GALAH

Contents

- Metal enrichment by mass accretion from ISM
- Aspherical explosions as origins of EMP stars
- Origin of Carbon enhancement in CEMP-no stars

Contents

- Metal enrichment by mass accretion from ISM
- Aspherical explosions as origins of EMP stars
- Origin of Carbon enhancement in CEMP-no stars

First chemical enrichment H,He H,He C,O,Mg Mixture of SN ejecta and pristine gas The abundance patterns of the EMP stars possess information on properties of Population III supernovae.

Metal-poor stars preserve their initial abundance patterns?

Bondi-Hoyle-Lyttleton accretion could enhance [Fe/H] up to -2

Shen+17

However, the estimate does not include stellar wind from EMP stars.

• Sun has a heliosphere blocking the ISM wind.

However, the estimate does not include stellar wind from EMP stars.

Tanaka, Chiaki, NT, & Susa 17

Photoionization considerably reduces the number of neutrals.

Tanaka, Chiaki, NT, & Susa 17

Contents

- Metal enrichment by mass accretion from ISM
- Aspherical explosions as origins of EMP stars
- Origin of Carbon enhancement in CEMP-no stars

Spherical explosions cannot explain metal-poor stars (in early 2000s)

Ejected

Mixing-fallback model

 A parametric model mimics an aspherical explosion due to (a) the Rayleigh-Taylor mixing or (b) jet explosion.

 $M_{\rm cut}({\rm fin}) = M_{\rm cut}({\rm ini}) + (1 - f)[M_{\rm mix}({\rm out}) - M_{\rm cut}({\rm ini})]$

Simulation of mixing-fallback

Rayleigh-Taylor instability

Jet-explosion

Nucleosynthesis yields

Rayleigh-Taylor instability

Jet explosion

Contents

- Metal enrichment by mass accretion from ISM
- Aspherical explosions as origins of EMP stars
- Origin of Carbon enhancement in CEMP-no stars

Origin of Carbon enhancement

- CEMP-s star
 - Binary: Mass transfer from AGB companion
 - Single star: Explosion of a massive rotator
- CEMP-no star
 - Faint SN (RT instability or jet explosion) (e.g., Joggerst+10; Chen+17; NT+07; NT09;)
 - Mass loss from massive rotator (spinstar) (e.g., Meynet+06)

- They are not exclusive and rather complimentary.
- CEMP-no star with [C/N] > 0 can be explained by the rotation in a massive star.

- They are not exclusive and rather complimentary.
- CEMP-no star with [C/N] > 0 requires rotation in a massive star.

- They are not exclusive and rather complimentary.
- CEMP-no star with [C/N] > 0 requires rotation in a massive star.
- Spinstar has inevitably N-rich wind ejecta.

- They are not exclusive and rather complimentary.
- CEMP-no star with [C/N] ~ 0 requires rotation in a massive star.
- Spinstar has inevitably N-rich wind ejecta.
- Faint SN model does not need to be N-rich, if the rotation of progenitor is slow.

Evidence of faint SN of slow rotator -metal-poor stars-

Ito, Aoki, Beers, NT, Honda, Carollo 13 (see also Aoki-san's talk)

Evidence of faint SN of slow rotator -Low-[Fe/H] Damped Lyman α system-

Diagnostics of CEMP-no stars view

• Progenitor model

• Mixing-fallback process in faint SNe

Summary

- Metal enrichment due to the mass accretion from the ISM is negligible.
- Aspherical explosion is required for all of the EMP stars (not only for the CEMP stars).
- Origins of CEMP-no stars

Faint SN of slow rotator

Faint SN of rapid rotator Spinstar w/ other SN for Fe (Mixed star, sometime NEMP stars)

Faint SN with jet/collimated outflow

Faint SN with RT instability Faint SN with jet/collimated outflow