The orbits of CEMP-s binaries and what we can learn from them

Onno Pols

Dept. of Astrophysics/IMAPP, Radboud Universiteit Nijmegen

with

Martha Saladino (PhD), Carlo Abate, Richard Stancliffe

carbon-enhanced metal-poor stars

- 6–25% of halo stars with [Fe/H] < -2 having [C/Fe] > 1 Lucatello+2006, Lee+2013
- CEMP-s stars (~80%): also enhanced in heavy elements produced by the s-process
 ⇒ AGB nucleosynthesis
- some also appear r-process enriched: CEMP-r/s (or CEMP-i)
- probably all binaries Lucatello+2005, Starkenburg+2014, Hansen+2016

- **CEMP-no** stars: no heavy-element enhancements
- dominate at [Fe/H] < -3
- normal (field) binary properties Starkenburg+2014, Hansen+2015

carbon-enhanced metal-poor stars

- 6–25% of halo stars with [Fe/H] < -2 having [C/Fe] > 1 Lucatello+2006, Lee+2013
- CEMP-s stars (~80%): also enhanced in heavy elements produced by the s-process
 ⇒ AGB nucleosynthesis
- some also appear r-process enriched: CEMP-r/s (or CEMP-i)
- probably all binaries Lucatello+2005, Starkenburg+2014, Hansen+2016
- likely origin in mass transfer from companion star during AGB phase (similar to Ba and CH stars)

- **CEMP-no** stars: no heavy-element enhancements
- dominate at [Fe/H] < -3
- normal (field) binary properties Starkenburg+2014, Hansen+2015
- probably entirely different origin

chemically polluted binaries

• binaries with an **unevolved (MS, RG)** star showing signs of AGB nucleosynthesis (carbon, s-process elements):

	Ba stars	CH stars	CEMP-s stars
- population:	Galactic disk		halo
- metallicity:	$\sim 0.5 Z_{sun}$	~0.1 Z _{sun}	$< 0.01 \ Z_{sun}$
- fraction (RG):	~1%	~2%	6–20% (!)
- duplicity:	100%	100%	100% (?)

- probes of AGB nucleosynthesis at low metallicity
- probes of binary interaction processes at low/intermediate stellar mass

binary evolution scenario

orbits of polluted binaries

eccentricity versus orbital period

- periods mostly $10^2 10^4$ days
- substantially eccentric (but less so than unevolved binaries at same *P*)
- mass functions consistent with WD companions

orbits of polluted binaries

eccentricity versus orbital period

- periods mostly $10^2 10^4$ days
- substantially eccentric (but less so than unevolved binaries at same *P*)
 - high-precision RV monitoring of 22 CEMP-s stars over 8 yrs: Hansen+2016
 - 18 show orbital motion
 - 4 constant RV, apparently single
 - scarcity of orbits with P > 10⁴ d is *not* a selection effect Starkenburg+ 2014

orbits of polluted binaries

eccentricity versus orbital period

- periods mostly $10^2 10^4$ days
- substantially eccentric (but less so than unevolved binaries at same *P*)
- mass functions consistent with WD companions
- very similar *e-P* distributions found among many classes of post-AGB/RGB binaries:
 - extrinsic S stars (without Tc)
 - **post-AGB stars** in binaries
 - S-type symbiotics
 - blue stragglers in old populations
 - sdB+MS binaries

orbits of post-RGB/AGB binaries

binary period distribution

binary period distribution

close binaries

- close binaries expected to circularize due to tidal interactions
- RLOF from red giants mostly **unstable** \Rightarrow expect spiral-in to closer orbits

wide binaries

• wide binaries interact by their stellar winds, especially on the AGB where the bulk of mass loss occurs (slow, dense winds)

wide binaries

• wide binaries interact by their stellar winds, especially on the AGB where the bulk of mass loss occurs (slow, dense winds)

descendants of AGB binaries

 expectations from binary evolution theory: close binaries will tighten and circularize, wide binaries will widen

descendants of AGB binaries

... but known post-AGB binaries are right in the expected *P* gap, and often eccentric!

wind interaction revisited

- conditions for BHL accretion (isotropic outflow, $v_{wind} \gg v_{orb}$) do not hold for AGB binaries with slow, dense winds
- possibility of wind-RLOF: slow wind fills Roche lobe, highly distorted outflow Mohamed+Podsiadlowski 2007

- confirmed by hydrodynamical simulations of AGB wind mass transfer e.g. Jahanara+ 2005, Mohamed 2010, Liu+ 2017, Chen+ 2017, Saladino+ 2017
 - larger accretion efficiencies
 - formation of circumbinary discs
 - enhanced angular momentum loss

wind mass transfer simulations

- hydrodynamics (SPH) and orbital dynamics (N-body) coupled in AMUSE Saladino+ 2017, in prep.
- 3.0 (AGB) + 1.5 M_{sun} (sink) in circular orbit, $dM_1/dt = 10^{-6} M_{sun}/yr$, a = 5 AU $v_w = 15 \text{ km/s} (\approx 0.5 v_{orb})$ $v_w = 30 \text{ km/s} (\approx v_{orb})$

wind mass transfer simulations

- 3.0 (AGB) + 1.5 M_{sun} (sink) in circular orbit, $dM_1/dt = 10^{-6} M_{sun}/yr$
- measure accretion rate and angular momentum loss as function of v_{wind} and a: Saladino+ 2017, in prep. (cf. also Chen+ 2017)
 - $v_w > v_{orb}$: accretion ~ BHL, nearly isotropic outflow: orbit expands
 - $v_w < v_{orb}$: accretion > BHL (up to 40% of wind), strongly modified outflow: *orbit shrinks* as result of enhanced AM loss

modelling CEMP-s binaries

- Abate+ 2015: model 14 CEMP-s binaries with orbits known at the time
 - fit measured abundances, surface gravity **and** orbital period
 - find best-fitting binary model, using recent AGB nucleosynthesis models Karakas+2010, Lugaro+2012

modelling CEMP-s binaries

- Abate+ 2015: model 14 CEMP-s binaries with orbits known at the time
 - fit measured **abundances**, surface gravity **and** orbital period
 - find best-fitting binary model, using recent AGB nucleosynthesis models Karakas+2010, Lugaro+2012
- generally good fit to CEMP-s abundance patterns (but *not* the CEMP-r/s)
- in many systems: large amount of accretion (~0.3 M_{sun}) needed to reproduce observed abundances
 - N.B. accreted material is diluted by *thermohaline mixing* Stancliffe+2007, Stancliffe+Glebbeek 2008
- this requires efficient accretion in close orbits and enhanced AM loss $(\sim 2 \times J_{tot}/M_{tot})$ during wind accretion to match P_{orb}

binary population synthesis of CEMP-s stars: Abate+ 2015, 2017

- solar neighbourhood IMF and binary statistics
- can (just) reproduce observed CEMP-s fraction of ≈ 6% at [Fe/H] > -2.5 (SDSS/SEGUE, Lee+2014)
- mostly resulting from wind mass transfer, which needs to be efficient (wind-RLOF)
- requires wide range of initial orbits $(P \sim 10^3 10^{5.5} \text{ d})$
- isotropic wind assumption ⇒
 final periods are too wide

contribution from stable RLOF? Abate+2017, in prep.

- RLOF from red giant can be *stable* if initial mass ratio $M_1/M_2 \sim 1$ Chen+Han 2008, Woods+ 2011, Pavlovskii+Ivanova 2014
 - \Rightarrow modest effect on overall *P* distribution
- may explain circular CEMP-s orbits with *P* ~ 400 d?

contribution from stable RLOF? Abate+2017, in prep.

- RLOF from red giant can be *stable* if initial mass ratio $M_1/M_2 \sim 1$ Chen+Han 2008, Woods+ 2011, Pavlovskii+Ivanova 2014
 - \Rightarrow modest effect on overall *P* distribution
- may explain circular CEMP-s orbits with *P* ~ 400 d?

enhanced angular momentum loss? Abate+2017, in prep.

- parameterized AM loss, compared to isotropic wind:
 - hydro models of wind transfer Jahanara+2005
 - ballistic "wind" simulations Brookshaw+Tavani 1993 (probably overestimates AM loss)

 \Rightarrow strong orbital AM loss helps producing close CEMP-s orbits

descendants of AGB binaries

 observational evidence: a continuity of orbital properties across close/wide-binary boundary

descendants of AGB binaries

 observational evidence: a continuity of orbital properties across close/wide-binary boundary

summary

- >50% of low- and intermediate-mass binaries undergo their main interaction during the AGB phase
 - produces variety of (chemically polluted) binaries with very similar orbital properties
 - provides interesting tests of both AGB nucleosynthesis and (still poorly understood) binary interaction processes
- evidence from both hydro simulations and modelling CEMP-s binaries:
 - efficient wind accretion (wind-RLOF)
 - orbital shrinkage during AGB wind interaction
 - pumping of eccentricity during interaction, process still unclear