New Site for Synthesis of Heavy Elements in Massive Pop III and Pop II Stars

Projjwal Banerjee (Shanghai Jiao Tong U.) Collaborators Y.-Z. Qian (U. Minnesota) and Alexander Heger (Monash U.)

Neutron Capture Processes

r-process

NS-NS and NS-BH mergers (GW170817!) CCSN: neutrino-wind Z≲50 Jets/MR CSSN? (Mösta et al 2014)

s-process

AGB stars of 1-3 solar masses Does not operate in the early galaxy Rotating massive stars: Mostly Sr,Y,Zr (Frischknecht et al 2016)

EMP Stars [Fe/H]≲-2

Neutron-capture-rich stars

r-I	$0.3 \le [Eu/Fe] \le +1.0$ and $[Ba/Eu] < 0$
r-II	[Eu/Fe] > +1.0 and $[Ba/Eu] < 0$
S	[Ba/Fe] > +1.0 and $[Ba/Eu] > +0.5$
r/s	0.0 < [Ba/Eu] < +0.5
Carbon-enhanced metal-poor stars	
CEMP	[C/Fe] > +1.0
CEMP-r	[C/Fe] > +1.0 and $[Eu/Fe] > +1.0$
CEMP-s	[C/Fe] > +1.0, $[Ba/Fe] > +1.0$, and $[Ba/Eu] > +0.5$
CEMP-r/s	[C/Fe] > +1.0 and $0.0 < [Ba/Eu] < +0.5$
CEMP-no	[C/Fe] > +1.0 and $[Ba/Fe] < 0$

Beers & Christlieb 2005

surface pollution

CEMP-s Stars

Mass transfer from AGB companion. Must be in a binary configuration but ~10%-30% are single (Hansen et al 2016) Low-s CEMP/EMP stars are likely single (Spite et al 2014)

CEMP-r/s Stars

Mass transfer from AGB companion. Initial gas cloud with high r enrichment similar to rII stars.

i-process in SAGB? (Jones et al 2015)

CEMP-no Stars

ISM

From Pop III stars? Origin of heavy elements?

Heavy Elements in EMP Stars

Both Ba and Sr are common in early Galaxy

Heavy Elements in EMP Stars

Early deviation from r-process value

Cannot be explained by surface pollution from AGB stars Additional sites for neutron capture associated with massive stars?

 $\epsilon_{3\alpha} \approx 23.1 \rho^2 X_{\alpha}^3 (T_8/2)^{18.5} \text{ ergs/g/s}$ Primary ¹²C and ¹⁶O production

Proton Ingestion

Growth of convective He shell. Mixing can occur at the convective boundary. Including overshoot leads to 10^{-3} - 10^{-5} M_{\odot} of proton ingestion. Occurs for 20 M_{\odot} \leq M \leq 30 M_{\odot}. M \leq 20 M_{\odot} : Convection does not reach outer He shell M \geq 30 M_{\odot} : Protons are depleted by the time He shell is convective

Nucleosynthesis from Proton Ingestion

• 25 M $_{\odot}$ progenitor, [Z]=-2 to -5 and [Z]=- ∞ . Scaled Solar abundance up to ⁷⁰Zn.

• Single proton ingestion at the edge of convective He shell at Cdep ($\sim 10^7$ s before collapse) and/or Odep ($\sim 10^6$ s before collapse).

• Small time steps to follow transport of protons and resulting nucleosynthesis self-consistently.

Free Neutrons from Protons

neutron via ${}^{12}{
m C}(p,\gamma){}^{13}{
m N}(e^+\nu_e){}^{13}{
m C}(\alpha,n){}^{16}{
m O}$

Free Neutrons from Protons

- •Mixing timescale $\sim 5 \times 10^3$ s.
- •Initially Y_n increases on a timescale of $\sim 10^4$ s.
- •Then Y_n decreases on a timescale of ~10⁵ s.
- •Most of the neutrons captured by ¹⁶O.
- Primary neutron production

- •Most of the neutron capture occurs in the first $\sim 10^6$ s.
- •Can result in both i-process and s-process.
- •Final [Ba/Eu] depends on time available Δ for neutron capture.
- •[Ba/Eu] can vary from ~ 0.25 to 1 with [Ba/Eu]<0.6 (>0.6) for Δ <10⁶ s (>10⁶ s)

Effect of Amount of Proton Ingestion

•Neutron abundance depends on the amount of p ingestion. •Production up to Bi for $10^{-3} \ge M_p \ge 10^{-5} M_{\odot}$ -1.30 \le [Sr/Ba] \le -0.5. •For $10^{-6} M_{\odot} \le M_p \le 10^{-5} M_{\odot}$ production up to Ba, high [Sr/Ba] > 0. •Negligible neutron capture for $M_p < 10^{-6} M_{\odot}$.

Effect of Progenitor Metallicity

Neutron abundance similar for $[Z] \leq -2$ (¹⁶O main poison) $[Z] \geq -2$ other poisons important.

Effect of Progenitor Metallicity

Yield scales linearly with the amount of seeds available. Increases rapidly for $[Z] \gtrsim -4$

What about Pop III stars? Seeds??

Metal-Free Progenitors

 $M_p = 10^{-4} M_{\odot}$

25 M⊙, [Z]=-∞

•Neutron capture from primary ⁴⁰⁻⁴⁸Ca and ⁴⁶⁻⁵⁰Ti.

- •Hampered by additional N= 20, 28 neutron magic numbers.
- •Overall yield limited by very low initial ⁴⁰⁻⁴⁸Ca, Ti.
- •Much of the seeds remain unused while new seeds are made.
- Can be used in subsequent ingestions.

Effect of Progenitor Metallicity

Yield similar to [Z] ~ -7.5

Metal-free progenitors: $log\epsilon(Ba) \sim -5$ to -3 for $M_{dil} \sim 10^2 - 10^4$ M. [Z] ≤ -2 : $log\epsilon(Ba)$ of up to ~ 2.5 for $M_{dil} \gtrsim 10^2$ M $_{\odot}$.

No sign of third component

Proton ingestion $\gtrsim 10^6$ s before collapse

Low Dilution of $\leq 1000 \text{ M}_{\odot}$

CEMP-r/s star

Proton ingestion $\leq 10^6$ s before collapse

Low Dilution of $\leq 1000 \text{ M}_{\odot}$

Low-s CEMP star, 0 < [Ba/Fe] < 1No clear variation of radial velocity Higher Dilution of $\gtrsim 1000 \text{ M}_{\odot}$

Low-s CEMP star, 0 < [Ba/Fe] < 1No clear variation of radial velocity Higher Dilution of $\gtrsim 1000 \text{ M}_{\odot}$

For a fixed [Z], dilution controls the overall enhancement

•M_p≥ 10⁻⁵ M_☉ → s and r/s pattern with [Sr/Ba] <-0.5 and [Ba/Eu]= 0.25-1.00, Pb comparable to Ba •M_p≤ 10⁻⁵ M_☉ → high [Sr/Ba]> 0, very little Pb. •Neutrino-wind contribution for Sr important for [Z]≲-3.

-4 \lesssim [Z] \lesssim -2 Progenitors

•Low energy explosions \rightarrow Low dilution \rightarrow High enhancement \rightarrow CEMP-s and CEMP-r/s stars

•Medium/high energy explosions \rightarrow Higher dilution \rightarrow Lower/No enhancement \rightarrow CEMP-no/EMP-no/low-s stars.

Metal-free and [Z] ≤-4 Progenitors

Lower yields \rightarrow CEMP-no/EMP-no stars.

•M_p≥ 10⁻⁵ M_☉ → s and r/s pattern with [Sr/Ba] <-0.5 and [Ba/Eu]= 0.25-1.00, Pb comparable to Ba •M_p≤ 10⁻⁵ M_☉ → high [Sr/Ba]> 0, very little Pb. •Neutrino-wind contribution for Sr important for [Z]≲-3.

-4 \lesssim [Z] \lesssim -2 Progenitors

•Low energy explosions \rightarrow Low dilution \rightarrow High enhancement \rightarrow CEMP-s and CEMP-r/s stars

•Medium/high energy explosions \rightarrow Higher dilution \rightarrow Lower/No enhancement \rightarrow CEMP-no/EMP-no/low-s stars.

Metal-free and [Z] ≤-4 Progenitors

Lower yields \rightarrow CEMP-no/EMP-no stars.

Heavy elements can be ejected even for low energy explosions (faint supernova)

•M_p≥ 10⁻⁵ M_☉ → s and r/s pattern with [Sr/Ba] <-0.5 and [Ba/Eu]= 0.25-1.00, Pb comparable to Ba •M_p≤ 10⁻⁵ M_☉ → high [Sr/Ba]> 0, very little Pb. •Neutrino-wind contribution for Sr important for [Z]≲-3.

-4 \lesssim [Z] \lesssim -2 Progenitors

•Low energy explosions \rightarrow Low dilution \rightarrow High enhancement \rightarrow CEMP-s and CEMP-r/s stars

•Medium/high energy explosions \rightarrow Higher dilution \rightarrow Lower/No enhancement \rightarrow CEMP-no/EMP-no/low-s stars.

Metal-free and [Z] ≤-4 Progenitors

Lower yields \rightarrow CEMP-no/EMP-no stars.

Heavy elements can be ejected even for low energy explosions (faint supernova)

CEMP-s and CEMP-r/s stars do not always need to be in a binary

•M_p≥ 10⁻⁵ M_☉ → s and r/s pattern with [Sr/Ba] <-0.5 and [Ba/Eu]= 0.25-1.00, Pb comparable to Ba •M_p≤ 10⁻⁵ M_☉ → high [Sr/Ba]> 0, very little Pb. •Neutrino-wind contribution for Sr important for [Z]≤-3 to -4.

-4 \lesssim [Z] \lesssim -2 Progenitors

•Low energy explosions \rightarrow Low dilution \rightarrow High enhancement \rightarrow CEMP-s and CEMP-r/s stars

•Medium/high energy explosions \rightarrow Higher dilution \rightarrow Lower/No enhancement \rightarrow CEMP-no/EMP-no/low-s stars.

Metal-free and [Z] ≤-4 Progenitors

Lower yields \rightarrow CEMP-no/EMP-no stars.

Heavy elements can be ejected even for low energy explosions (faint supernova)

CEMP-s and CEMP-r/s stars do not always need to be in a binary

Common origin of some the CEMP-s/CEMP-r/s and CEMP-no stars

Summary

- •We identified a new site for synthesis of neutron-capture elements in metal-poor stars with $20 \text{ M}_\odot \lesssim M \lesssim 30 \text{ M}_\odot$ including primordial stars.
- •Neutron capture occurs during the last phases of massive stars when protons are ingested at the boundary of a fully convective He shell.
- Neutron production is primary whereas neutron capture is secondary in progenitors with initial metals.
- •Neutron production and capture is primary in primordial metal-free stars.
- •Can explain the ubiquity of neutron capture elements Sr and Ba observed in EMP stars.
- •Can explain the early deviation of [Ba/Eu] from pure r-process value.
- •Can be the source s-process elements in the early Galaxy.
- •Excellent fit to individual abundance patterns of several CEMP-s, CEMP-r/s, low-s stars.
- •Points to a common source for some of the CEMP-s, CEMp-r/s and CEMP-no stars.
- •Can be useful in constraining the IMF of Pop II and Pop III stars.
- •Neutron capture is efficient up to [Z]--1, can produce more Sr than weak-s process.
- •Mixing with initial r-process enriched ISM could explain other EMP stars.
- •Could be processed further by AGB stars initially enriched by this mechanism.