The i process and CEMP stars

Melanie Hampel

Monash University

Credit: HST/NASA/ESA

With thanks to...

Maria Lugaro (Budapest)

Bradley Meyer (Clemson)

Credit: HST/NASA/ESA

CEMP stars: heavy elements

Lugaro et al. (2012), data from Masseron et al. (2010)

CEMP stars: heavy elements

Lugaro et al. (2012), data from Masseron et al. (2010)

Formation of CEMP-s stars

Credit: Carlo Abate

Formation of CEMP-s stars

Credit: Carlo Abate

Formation of CEMP-s stars

1

Credit: Carlo Abate

2

Initial r-process enrichment: at least [r/Fe] > 1 dex

Lugaro et al. (2012)

Initial r-process Enrichment: [r/Fe] = 1.5 dex

Initial r-process Enrichment: [r/Fe] = 1.5 dex

i process: $n \approx 10^{15} \text{ cm}^{-3}$

s process: $n = 10^7 \text{ cm}^{-3}$

Higher neutron densities: $n = 10^{10} \text{ cm}^{-3}$

Higher neutron densities: $n = 10^{12} \text{ cm}^{-3}$

Higher neutron densities: $n = 10^{14} \text{ cm}^{-3}$

Higher neutron densities: $n = 10^{15} \text{ cm}^{-3}$

Hampel et al. (2016)

Higher neutron densities: n=10¹⁵ cm⁻³

Hampel et al. (2016)

i process: decays

Neutron number

Credit: HST/NASA/ESA

i process abundance pattern

- Higher [Ba/Fe]
 very little ¹³⁸Ba
- Higher [Eu/Fe]
- Same [Sr/Fe]

$$\rightarrow$$
 higher [hs/ls]

also, [Ba/La] > 0

Hampel et al. (2016)

CEMP-i star: LP625-44

Hampel et al. (2016)

CEMP-i stars: Residuals

The i process ...

• ... is not a new idea \rightarrow Cowan & Rose (1977)

PRODUCTION OF ¹⁴C AND NEUTRONS IN RED GIANTS

JOHN J. COWAN AND WILLIAM K. ROSE Astronomy Program, University of Maryland, College Park Received 1976 June 28

ABSTRACT

We have examined the effects of mixing various amounts of hydrogen-rich material into the intershell convective region of red giants undergoing helium shell flashes. We find that significant amounts of ¹⁴C can be produced via the ¹⁴N(n, p)¹⁴C reaction. If substantial portions of this intershell region are mixed out into the envelopes of red giants, then ¹⁴C may be detectable in evolved stars.

We find a neutron number density in the intershell region of $\sim 10^{15}-10^{17}$ cm⁻³ and a flux of $\sim 10^{23}-10^{25}$ cm⁻² s⁻¹. This neutron flux is many orders of magnitude above the flux required for the classical *s*-process, and thus an intermediate neutron process (*i*-process) may operate in evolved red giants. The neutrons are principally produced by the ${}^{13}C(\alpha, n){}^{16}O$ reaction.

In all cases studied we find substantial enhancements of ¹⁷O. These mixing models offer a plausible explanation of the observations of enhanced ¹⁷O in the carbon star IRC 10216. For certain physical conditions we find significant enhancements of ¹⁵N in the intershell region.

Subject headings: nucleosynthesis — stars: abundances — stars: interiors — stars: late-type

The i process ...

• ... is not a new idea \rightarrow Cowan & Rose (1977)

PRODUCTION OF ¹⁴C AND NEUTRONS IN RED GIANTS

JOHN J. COWAN AND WILLIAM K. ROSE Astronomy Program, University of Maryland, College Park Received 1976 June 28

... needs a source of neutrons:

121

22

Producing neutrons

¹³C(α,n)¹⁶O

• Take ¹²C and add protons:

 $^{12}C(p, \gamma)^{13}N(\beta^{+})^{13}C$

- Need high temperatures
- Proton abundance determines neutron density
- It's a bit messy...

Neutron Profiles

Hampel + 2018 in prep.

Neutron Profiles: Less is More!

Too high proton fractions \rightarrow too little neutron exposure

CEMP-i star: LP625-44

Hampel + 2018 in prep.

Conclusions

- CEMP-s/r stars not readily explained by a combination of s- and rprocess
- An intermediate n-capture process does a much better job!
 → CEMP-i
- Need to identify a possible source
 → proton ingestion episodes
 - Low Z AGB stars (e.g. Fujimoto et al. 1990,

see Simon Campbell's talk...)

- Super AGB stars (Jones et al. 2016)
- Massive Stars (see Banerjee's talk)