Hidden gems: ~ Chemo(dynamic) characteristics of obscure low-mass globular clusters ~

Andreas Koch

A. Kunder (AIP), C.J. Hansen (MPIA), J. Wojno (AIP), T.T. Hansen (Carnegie)

Your average Globular Cluster

- Historically, GCs were considered "mono-metallic": [X/H] ~ const. within each system.
- Now: GCs host multiple pop's; phot. evidence and lightelement (CH/CN; Na-O) variations. (Osborne 1971; Cohen 197N; Gratton et al. 2012)

- Define "...GCs as the stellar aggregates showing the Na-O anticorrelation." (Carretta et al. 2010)

Not found in field stars, open clusters, or dwarf galaxies.

GC–field connection

Generally, GCs follow the abundance trends of the surrounding field \rightarrow they are excellent tracers of the Galactic components. Outliers are potentially accreted.

GC-field connection

Generally, GCs follow the abundance trends of the surrounding field \rightarrow they are excellent tracers of the Galactic components. Outliers are potentially accreted.

GC-dSph-field connection

Also within dwarf spheroidals, their globular clusters are coupled to the surrounding field population. Hendricks et al. (2016)

(Letarte et al. 2010; Lemasle et al. 2014; Hendricks, AK, et al. 2014)

Fornax GC stars

(Letarte et al. 2006; Larsen et al. 2012; Hendricks, AK, et al. 2016)

Tricky ones

Many clusters are tedious to characterize:

sparsely populated

 \rightarrow are they luminous OCs or low-mass GCs?

Small (projected) radii and/or high central density
 → challenging for wide-field, multiplex spectrographs

ESO452-SC11: $r_h = 0.5$ ', $r_t = 5.0$ ' cf. FLAMES' field of view = 25' AAOmega 2dF: 2°

pro : also sample foregound → chemical tagging possible con : small yield in members

ESO452-SC11

- Low-mass (~7x10³ M_•) object (Simpson et al. 2017)
- (I, b) = $(352^{\circ}, 12^{\circ})$; E(B–V) = 0.5 mag
- Low velocity dispersion of ~2.8 km/s (AK et al. 2017);
- Poorly constrained parameters (Cornish et al. 2006): age = 9–16 Gyr; [Fe/H] = -1.4 to -0.4 dex; R_{GC} = 6.6–7.5 kpc
- Bulge / inner halo; lower end of bulge MDF, similar to *"somewhat younger halo clusters".* Placed in the bulge by interaction with a satellite (Cornish et al. 2006)?
- New AAOmega spectra around CaT (R=11000) and 4100 Å (R=9000). 360 stars (АК, С.J. Hansen, & Kunder 2017).
- -0.88 ± 0.03 dex (CaT)

Tagging ESO452-SC11

- Using chemical tagging & kinematics, we could associate ESO452-SC11 with the *bulge* rather than (thick) *disk* or (inner) halo, as had been previously suggested.
- Orbits: within 3 kpc, firmly around the bulge!
- Majority of foreground stars are typical bulge-like.

ESO452-SC11

The same applies to heavy elements (*s*-, *r*-process) \rightarrow Power of even low-resolution.

Lowest-mass GC with evidence of *light*-element (Na, CN/CH) variations (Simpson et al. 2017)

FSR 1716: Open of Globular?!

Very low latitude object: $(I,b) = (330^{\circ}, -1.6^{\circ})$.

Prediction: at least 10±3 more clusters like this are lurking undiscovered in the disk (Ivanov et al. 2005).

Ambiguous classification:

- > 2 Gyr, metal-poor ([Fe/H] = -1.6) (2MASS /NTT CMD: Froebrich et al. 2007)
 - 7–12 Gyr, within Solar circle, 200 M_☉ old open cluster. This implies that it is a lucky survivor. (СМD "fit": Bonatto & Bica 2008)
 - Old (> 10 Gyr), metal-poor (-1.5) GC with RR Lyrae, $d_{\odot} = 7.5$ kpc. (VVV photometry: Minniti et al. 2017)

AAOmega spectra of 1048 stars toward FSR 1716.

FSR 1716: A pain in the plane

Full extent ~3', $r_h \sim 27$ ".

6 member candidates (AK, Kunder, & Wojno 2017)

```
Kinematic mass & low metallicity:
```

 $1.3 \times 10^4 M_{\odot}$; [Fe/H]_{CaT} = -1.38) confirmed by Apogee (Minniti et al. in prep)

 \rightarrow old GC rather than low-mass OC

Gaia 1

- **Discovered in Gaia (dooh...), but difficult characterization** (Koposov et al. 2017).
- Intermediate-age (3 6.3 Gyr) Cluster, "most likely • globular".
- Metal rich (0 to -0.7 dex, spec. vs. phot.). ullet

"Siriusly" ?! \rightarrow

Previous chemical analysis • did not solve discrepancies. (Simpson et al. 2017; Mucciarelli et al. 2017).

Tagging Gaia 1

Chemical tagging (R=30,000 at LCO/2.5-m Swope):

- Clearly a moderately metal-rich GC with thick-disk like abundances (α, Fe-peak, *n*-captures).
- Previous studies: more metal-rich, Solar abundance ratios, thin disk object (Simpson et al. 2017;

Mucciarelli et al. 2017;

- Bulge
- Thick disk
- Thin Disk
- Gaia 1

AK, T.T. Hansen, & Kunder (2017)

Multiple populations in Gaia 1?

Other object with multiple components, also in bulge: Terzan 5 (Origlia et al. 2011, 2013)!

- \rightarrow Multiple star formation events \rightarrow more massive past
- → Merger of (sub-solar) subfragments during disk formation, later capturing of (solar) disk material

Summary

- Even if GC abundances are utterly like the surrounding field, this tells us about their formation history.
- AAOmega program → chemical tagging of unknown objects can uniquely associate them with Galactic components AND resolve previous (phot.) discrepancies.
- This needs to be systematically explored. FSR (Froebrich et al. 2007) contains 1788 clusters incl. 681 known open, and 86 GCs.

Gaia 1: kinematics

PMs from UCAC5: Orbits are fully compatible with disk
membership.

