Future of GALAH + related surveys (observational surveys of stars in the Milky Way)

Sanjib Sharma (University of Sydney)

Milky Way a laboratory for understanding galaxy formation.

- Future in the context of understanding the formation and evolution of the MW.
- For distant galaxies we can only get gross properties as individual stars are difficult to resolve.
- Milky Way stars are nearby, so we can in principle get (x,v), [Fe/H], X/Fe, age, mass.
- With this we can test galaxy formation theories.

Image: Michael Goh

Image: Hubble Deep Field

How was Milky Way formed?

Stars formed

Chemical enrichment

Gas Accretion

Secular heating, non circular orbits

3

Blurring and Churning

- Blurring:
 - Disc heating makes orbits elliptic.
 - energy added but ang mom remains same.
- Churning:
 - Scattering at orbital resonance.
 - Changes the angular momentum causes radial migration

Age metallicity

- Z(t,R)
- Effect of churning and blurring
- Wide range of age and metallicity in solar neighborhood.

Figure 6. Upper panel: the metallicity of the cold ISM in each annulus as a function of lookback time showing each fifth ring. The curve for the solar annulus is red. Lower panel: the present density of solar-neighbourhood stars in the age–metallicity diagram. The colours encode the logarithm of the density of stars.

We only have the present snapshot, cannot go back in time to unravel the formation history.

What information do we have?

Large observational surveys of the Milky Way.

- Astrometric:
 - I,b, μ_I,μ_b . Angular position and angular velocity/proper motion
 - HIPPARCOS, UCAC4, PPMXL, HSOY, UCAC5, [GAIA]
- Photometric:
 - **B,V,u,g,r,i**, Color and magntiude of stars
 - d,T_{eff},
 - 2MASS, SDSS, APASS, SkyMapper, [LSST]
- Spectroscopic:
 - V_r, radial velocity, **d**, T_{eff}, logg, [Fe/H], [X/Fe],(mass, age)
 - GCS, SEGUE, RAVE, APOGEE, Gaia-ESO, LAMOST, GALAH [Funnel Web, SDSS V, 4MOST, WEAVE, DESI]

Machinery to interpret observations

- Forward modelling. From models to data.
 - (x, v) \rightarrow (x_{obs}, v_{obs})
- Equilibrium models, semi analytic
 - N body simulations too computationally expensive to fit data
- **f**(**x**,**v**, **τ**) to **f**(**J**,**τ**) (Binney 2010-2015)
 - $J(x,v | \Phi)$ constants of motion actions, Reduces problem from 6d to 3d
- $p(x_{birth}, v_{birth}, \tau, [\alpha/Fe], [Fe/H]) \rightarrow p(x_{now}, v_{now}, \tau, [\alpha/Fe], [Fe/H])$
 - N-body simulations

- p(x, v, t, [α/Fe], [Fe/H]) chrono-chemo-dynamic
- p(x, v, [α/Fe], [Fe/H]) chemo-dynamic
- p(x, [α/Fe], [Fe/H]) chemo-spatial
 - **p(R,z | [α/Fe], [Fe/H])** p([α/Fe], [Fe/H]) (MAP)
 - [Bovy et al. 2012, SEGUE]
 - **p([α/Fe], [Fe/H] | R,z)** p(R, z)
 - [Hayden et al.2015, APOGEE]
- p(R,z, [α/Fe], [Fe/H], t) chrono-chemo-spatial (MAAP)
 p(R,z | [α/Fe], [Fe/H], t) p([α/Fe], [Fe/H],t)

Mono abundance populations (MAP)

- SEGUE data 23,000 G dwarfs.
- p(R,z | [**α**/Fe], [Fe/H])

Bovy et al. 2012

- p(x, v, t, [α/Fe], [Fe/H]) chrono-chemo-dynamic
- p(x, v, [α/Fe], [Fe/H]) chemo-dynamic
- p(x, [α/Fe], [Fe/H]) chemo-spatial
 - **p(R,z | [α/Fe], [Fe/H])** p([α/Fe], [Fe/H]) (MAP)
 - [Bovy et al. 2012, SEGUE]
 - **p([α/Fe], [Fe/H] | R,z)** p(R, z)
 - [Hayden et al.2015, APOGEE]
- p(R,z, [α/Fe], [Fe/H], t) chrono-chemo-spatial (MAAP)
 p(R,z | [α/Fe], [Fe/H], t) p([α/Fe], [Fe/H],t)

How can we get ages.

- Main sequence turn off and subgiants
 - log g, Teff, [Fe/H]
 - parallax, log g, Teff, [Fe/H]
 - (M_v, Teff, [Fe/H])
 - Machine learning,
 - Xiang et al. 2017
- Giants
 - Asteroseismology
 - v_{max} , Δv , Teff, [Fe/H]
 - C/N, H-alpha
 - Machine learning,
 - Ness et al. 2015, Martig et al. 2016

Rise of the machines

- Train → Learn → Predict
- Input: Spectra with stellar parameters/labels
 Labels = {T_{eff}, log g, [Fe/H], Mass, Age, M_v}
- New spectra \rightarrow Output stellar parameters
- The Cannon (Ness et al , Casey et al, Ting et al)
- KPCA (Kernel principal component analysis)
 Xiang et al (LAMOST)

How can we get ages.

- Main sequence turn off and subgiants
 - log g, Teff, [Fe/H]
 - parallax, log g, Teff, [Fe/H]
 - (M_v, Teff, [Fe/H])
 - Machine learning,
 - Xiang et al. 2017
- Giants
 - Asteroseismology
 - v_{max} , Δv , Teff, [Fe/H]
 - C/N, H-alpha
 - Machine learning,
 - Ness et al. 2015, Martig et al. 2016

How can we get ages?

- BSTEP (Sharma et al 2018).
- Take 10,000 stars from a synetheic catalog and see how well we can recover the stellar properties
- Evenly sampled across (log g, Teff) plane.
- distance:10%,
- T_{eff}: 0.01 dex,
- Logg: 0.08
- [Fe/H]: 0.05
- (J,H,K): 0.02

Age [Gyr]

Age [Gyr]

Xiang et al. 2017

Age →

• No bimodality in p(h_z)

Mackereth et al. 2017

Age-velocity dispersion

- However, thick disc has distinct σ_w

Uncertainties in (age, [Fe/H], [α/Fe]) not taken into account.

Trends are not intrinsic.

Extinction mapping

- Photometry → 3D Extinction
 - Galactic models are used as priors.
- Photometry, Spectroscopy → 3D Extinction
 - Possible even with low res spectra.
 - Spectroscopic survey with full 3d coverage, but not necessarily complete would be ideal.
 - Hierarchical modelling.
- Photometry color \rightarrow T_{eff}, distance
 - For all Gaia stars
- Photometry, parallax \rightarrow T_{eff}, age
 - Ages for all Gaia MSTO stars with good parallax.

KEPLER

- Continuous monitoring of 150,000 stars.
- 8 deg radius

PLATO 1600 sq degx12, Launch 2025 2 LD 2yr, 12 step-and-stare 1 month 22.5 deg V~15, 6.3 kpc

Miglio et al 2017

K2-HERMES survey

PI: Sanjib Sharma , Cols: Dennis Stello, Rob Wittenmyer, Joss Bland-Hawthorn, Martin Asplund, Ken Freeman, Sven Buder, Janez Kos, Ly Duong, Jane Lin, Karin Lind, Melissa Ness, Tomaz Zwitter, Daniel Huber, Tim Bedding, Gregor Traven, Sarah Martell, Gayandhi De Silva, Jeffrey Simpson, Borja Anguiano, Andrew Casey, Luca Casagrande, Aaron Dotter, James Esdaile, Marc Hon, Prajwal Kafle, Michael Ireland, David Nataf, Shourya Khanna, Hafiz Saddon, Duncan Wright, Daniel Zucker

K2-HERMES

- Current status of observations.
- DR1
 - (Sharma et al. 2018 in prep)

TESS-HERMES (DR1, Sharma et al. 2018)

- http://www.physics.usyd.edu.au/tess-hermes/
- MAST (NASA archive)

Future Spectroscopic surveys

- Why do we need ?
 - (Age, abundance)
- How many stars do we need?
 - (x, v, t, Fe/H, [α /Fe]) space 9 dims
 - (J(x,v), t, Fe/H, [α /Fe]) space 6 dims
 - 10 bins per dim \rightarrow 10⁹ cells)
 - 10 stars per cell \rightarrow 10¹⁰ stars (10⁷ using J).

- What coverage do we need?
 - All sky (Full sampling of (R,z) space)
- How faint?
 - For disc 5-8 kpc
 - For bulge 8-10 kpc
 - For halo 20-80 kpc
 - MSTO M_v =4, Gaints M_v =1
 - V=17.5, d_{MSTO} = 5 kpc , d_{Giant} = 20 kpc
 - V=20.5, d_{MSTO} = 20 kpc , d_{Giant} = 80 kpc

Design of spectroscopic surveys

- Multiplexing
 - high >1000
- FOV
 - Large > 1 deg diamter
- Telescope diameter
 - Large 4m, 8m, 12m.
- Multi or single epoch.
- Wavelength range and Resolution

Wavelength range and resolution

- LR 1000-5000, full optical 360nm-980nm
 - Driven by need for extragalactic science
 - SEGUE, RAVE, LAMOST, PFS, DESI, WEAVE, 4MOST
- HR 20000-50000, only windows
 - APOGEE, GALAH, 4MOST, WEAVE, LAMOST, MSE

McConnachie et al. 2016

What wavelength windows?

- Blue < 450 nm, for heavy elements, metal poor stars, CH, Ca HK,SrII, Ball, Y
- Red for in plane to avoid extinction APOGEE
- Radial Vel- Mgb, Call
- Gravity sensitive
 - Cal, Call, Mgb,
- Interstellar- NaD
- Machine Learning age sensitive features

Facility / Instrument	First light (anticipated)	Aperture (M1 in m)	Field of View (sq. deg)	Etendue	Multiplexing	Wavelength coverage (um)	Spectral resolutio (approx)	
SDSS I - IV	Existing	2.5	1.54	7.6	640	0.38 - 0.92	1800	
Guo Shoujing / LAMOST	Existing	4	19.6	246	4000	0.37 - 0.90	1000 - 10000	
AAT / HERMES	2015	3.9	3.14	37.5	392	windows	28000, 50000	
WHT / WEAVE	2017	4	3.14	39.5	1000	0.37 - 1.00	5000	
						windows	20000	
VISTA / 4MOST	2017	4	2.5	31.4	2400	0.39 - 0.95	5000	
						windows	18000	
Mayall / DESI	2018	4	7.1	89.2	5000	0.36 - 0.98	4000	
VIT / MOONS	2018	8.2	0.14	7.4	1000	0.8 - 1.8	4000	
					1000	windows	20000	
Subaru / PFS	2019	8.2	1.25	66	2400	0.38 - 1.26	2000	
						0.71 - 0.89	5000	
MSE	2024	11.25	1.5	149	3468	0.36 - 1.8	3000	
						0.36 - 0.95	6500	
						50% coverage	0500	
						windows	40000	

SDSS-V (2020-2024)

- 6M stars, APOGEE IR spectrograph
- Time domain spectroscopy (20 min to 20 yrs), (Alice Quillen poster)
- IFU 3300 sq deg, R 5000, 360nm-1000nm
 - ISM, stellar populations

Future of surveys

 We can understand the formation of the Milky Way, with accurate ages and abundance for large number of stars spread all over the Galaxy.

Spectroscopic Survey Facilities by 2020–2025												
Survey (facility)	N _{target}	R _{spectra}	N _{multi}	$\lambda[\mu m]$	$\Omega_{ m sky}$	Nepoch	Timeframe	mprimary				
SDSS-V	7×10^{6}	22,000	500	1.51–1.7	4π	1–174	2020-2024	$m_H \lesssim 13.4$				
		2,000		0.37-1.0	411			$m_i \lesssim 20$				
Gaia (RVS)	8×10^{6}	11,000		0.85-0.87	4π	~ 60	2013-2020	$m_G \lesssim 12$				
Gaia-ESO	0.1×10^{6}	17,000	140	0.55 & 0.85	0.02π	~ 1	2013-2018	$m_G \lesssim 17$				
GALAH	0.8×10^{6}	28,000	400	0.40-0.85	$ \pi, b \ge 10$	~ 1	2015-2020	$m_G \lesssim 13$				
WEAVE	$0.8 imes 10^6$	5,000	1000	0.37–0.9	$\sim \pi$	~1-2	2018–2023	$m_G \lesssim 19$				
		20,000						0 ~~				
DESI	4×10^{7}	3,000	5000	0.36-0.98	$ 1.35\pi, b \ge 25^{\circ}$	1-4	2019–2024	$m_r \lesssim 23$				
LAMOST	8×10^{6}	1,800	4000	0.4-0.9	0.5π	~ 1	2010-2020	$m_G \lesssim 16$				
4MOST	10×10^{6}	5,000	1600	0.4-0.9	1.5π	1–2	2023–2028	$m_r \lesssim 22$				
		20,000	800					$m_V \lesssim 16$				
APOGEE-1& 2	5×10^{5}	22,000	300	1.51-1.7	0.5π	$\sim 1 - 30$	2011-2019	$m_H \lesssim 12.2$				
PFS	1×10^{6}	3,000	2400	0.4–1.6	0.05π	1	2018-2021	$m_i \lesssim 23$				
MOONS	2×10^{6}	5,000	1000	0.6–1.8	0.05π	1	2020-2025	$m_g \lesssim 22$				
		20,000						$m_H \lesssim 17$				