"Connection to dwarf galaxies"

Or:

Carbon enhancement is everywhere

Fe and Ca Abundances in a Human Being

from
Evan Kirby

$$
[\mathrm{Fe} / \mathrm{H}]=\log \left(\frac{n(\mathrm{Fe})}{n(\mathrm{H})}\right)-\log \left(\frac{n(\mathrm{Fe})}{n(\mathrm{H})}\right)_{\odot}
$$

human being
$[\mathrm{Fe} / \mathrm{H}]=-1.66$
$[\mathrm{Ca} / \mathrm{Fe}]=+5.88$
$12+\log (\mathrm{O} / \mathrm{H})=+11.61$
$[\mathrm{O} / \mathrm{H}]=+2.68$
$[\mathrm{Mg} / \mathrm{Fe}] \equiv+2.40$
$[\mathrm{Mg} / \mathrm{H}]=+0.74$
$[\mathrm{C} / \mathrm{H}]=+2.62$
$[\mathrm{N} / \mathrm{H}]=+2.28$
$[\mathrm{Ca} / \mathrm{H}]=+4.22$
$[\mathrm{P} / \mathrm{H}]=+4.06$
$[\mathrm{K} / \mathrm{H}]=+3.84$
$[\mathrm{S} / \mathrm{H}] \equiv+1.69$
$[\mathrm{Na} / \mathrm{H}]=+2.49$
$[\mathrm{Cl} / \mathrm{H}]=+3.13$
$[\mathrm{I} / \mathrm{H}]=+2.99$
[C/Fe] ~ 4 for humans
[C/Fe] ~ 4 for HE1327-2326

IMPORTANCE OF CEMP STARS

THE UBIQUITY OF CARBON ENHANCEMENT

Nuclear Astrophysics

First r+s star discovered: CEMP star

Stellar archaeology CEMP star HE1327-2326: constraints on first stars

Dwarf Galaxy

 ArchaeologyClassical dwarfs:
Sculptor
Ultra-faint dwarfs: Segue 1, Ret II
(E) Note: The list of references on the query page will be updated to include only those studies that fulfill your selection criteria.

- Upper limits are shown as inverted triangles when the option is selected on the query page.
© Try hovering over the data points!
© Click on entries in the legend to remove them from the plot.

Statiolics of plotted data:

Number of stars: 1341,

Number of upper limits: 133

JINA-CEE
JINAbase
Home

Query/Plot
Search
References
User Page

C-Logout

Copyright © 2002-2017 JINA-CEE

Welcome to JINAbase!

> The admins need to assign you a role to access the internal pages of JINAbase. If it has been longer than 48 hours since you registered, please contact one of the admins below.

JINAbase: A database for metal-poor stars

This web application enables you to easily access the database. The different tabs in the navigation bar guide you through the website.

To get access to the user interface to upload your data and help maintain the database, please sign up using the form on this page.
(i) If you find JINAbase useful for your work/plots, please do the following:

1. Cite the original papers where the data comes from. (We've made that easy for you, just head to the references tab and you'll find a link to the bibtex entry.)
2. Cite our paper (Abohalima \& Frebel 2018, submitted). Find it here on arxiv.

Query/Plot

This tab has options to query the database for a customized sample of stars, it includes several options to customize your sample. After you select your preferences, the queried sample could then be retrieved as an ascii table (for now) or plotted in an interactive plot.
Search

In this tab you can search for a star in JINAbase. There are two options; 1) diplay user selected information for a star or list of stars, 2) plot the abundances as a function of the atomic number(the option to plot scaled solar values will be added soon).

Updates:

The web application is still under development, if you face any errors or have any suggestions please contact us.

References

Here you can find all the original papers where the data comes from. You can also find a link to the paper on ADS as well as a direct link to the bibtex entry.

RECORD HOLDERS OVER TIME: LOWEST [CA/H] STARS

THE STORY OF HE 1327-2326

optical spectrum, taken with Subaru

On the most Fe poor stars (e.g., Frebel et al. 2005) $[\mathrm{Fe} / \mathrm{H}]=-5.7 ;[\mathrm{C} / \mathrm{Fe}]=4.5$

Lines of 11 elements could be detected in the optical

Iwamoto et al. 2005

Second star whose abundance pattern was reproduced with the yields of a supernova with a mixing and fallback mechanism (to explain high [C/Fe])
Indicated a progenitor with a faint explosion energy ($w / 25 M s u n$)
No zinc measurement from optical spectra, only a useless upper limit
=> Zn constraints explosion mechanism and energy!

New UV COS SPECTRUM

Ezzeddine, Frebel, Roederer et al. 2018, in prep

ZINC NUCLEOSYNTHESIS

a little refresher...

After oxygen burning, silicon burning begins at 2.7 billion K

Si burning:

(Mn (25), Cr (24) form in incomplete Si burning)
Fe (26) forms in complete and incomplete Si burning
(Co (27) forms in complete Si burning)
Zinc (30) forms in complete Si burning
${ }^{28} \mathrm{Si}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{32} \mathrm{~S}+$ photon;
${ }^{32} \mathrm{~S}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{36} \mathrm{Ar}+$ photon;
${ }^{36} \mathrm{Ar}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{40} \mathrm{Ca}+$ photon;
${ }^{40} \mathrm{Ca}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{44} \mathrm{Ti}{ }^{*}+$ photon;
${ }^{44} \mathrm{Ti}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{48} \mathrm{C}{ }^{*}+$ photon;
${ }^{48} \mathrm{Cr}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{52} \mathrm{Fe}^{*}+$ photon;
${ }^{52} \mathrm{Fe}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{56} \mathrm{Ni}{ }^{*}+$ photon;
${ }^{56} \mathrm{Ni}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{60} \mathrm{Zn}^{*}+$ photon
${ }^{60} \mathrm{Zn}+{ }^{4} \mathrm{He}<=>{ }^{64} \mathrm{Ga}^{*}+$ photon

* radioactive!!

To make $[\mathrm{Zn} / \mathrm{Fe}]>0$: Need ejection of inner materials like $\mathbf{Z n}$, fallback of Fe => Mcut should be located at the bottom of the complete and incomplete Si burning layers

ZINC NUCLEOSYNTHESIS

a little refresher...

After oxygen burning, silicon burning begins at 2.7 billion K

Si burning:

(Mn (25), Cr (24) form in incomplete Si burning)
Fe (26) forms in complete and incomplete Si burning
(Co (27) forms in complete Si burning)
Zinc (30) forms in complete Si burning
-
To make $[\mathrm{Zn} / \mathrm{Fe}]>0$: Need ejection of inner materials like $\mathbf{Z n}$, fallback of Fe $=>$ Mcut should be located at the bottom of the complete and incomplete Si burning layers

WHAT DOES THIS ALL MEAN?

Ezzeddine, Frebel, Roederer et al. 2018, in prep

HST UV observation of HE 1327-2327 yield a first [Zn/Fe] for star w/ $[\mathrm{Fe} / \mathrm{H}]<-4$

High [Zn/Fe]=0.9 (derived from just UV Zn and Fe measurements) can only be reproduced in explosions w/ high entropy environment

A high entropy environment is only realized in a jet-like explosion due to the concentration of explosion energy towards the opening-angle of the jet (confirmed with multi-D calculations); 1D mixing and fallback scenario naturally models aspherical effects

First evidence that Pop III first stars died in aspherical jet explosions!
=> Many implications for chemical enrichment and metal mixing processes

We found a CEMP halo star...!

Gull, Frebel et al. 2018, in prep

The first true $\mathrm{r}+\mathrm{s}$ star!

An s-process star with $[\mathrm{Fe} / \mathrm{H}]=-2.3$
that formed from r-process enhanced gas!

Gull, Frebel et al. 2018, in prep

The first true $r+s$ star!

An s-process star with $[\mathrm{Fe} / \mathrm{H}]=-2.3$
that formed from r-process enhanced gas!

Gull, Frebel et al. 2018, in prep

The first true $r+s$ star!

An s-process star with $[\mathrm{Fe} / \mathrm{H}]=-2.3$
that formed from r-process enhanced gas!

Gull, Frebel et al. 2018, in prep

CEMP STARS IN DWARF GALAXIES

Classical dwarfs: not so (m)any in 2015

Ultra-faint dwarfs: 5/21 => 23\% (in 2015) 10/35 => 28\% (2016)

Halo: 25\% ([Fe/H]<-2.5)
CEMP stars

CEMP STARS IN SCULPTOR

Chiti et al. 2018, subm

CEMP FRACTION IN SCULPTOR

Fig. 12.- Top: $[\mathrm{C} / \mathrm{Fe}]$ as a function of $[\mathrm{Fe} / \mathrm{H}]$ for RGB stars in our M2FS Sculptor sample. CH strong, Ba strong, and CEMP-s candidates are not displayed in the upper panel of the plot. The displayed $[\mathrm{C} / \mathrm{Fe}]$ measurements have been corrected for the evolutionary state of each star following Placco et al. (2014). The dashed red line marks the cutoff for a star to be considered a CEMP star ([C/Fe] $>$ 0.7). Red downward-facing triangles are upper limits on $[\mathrm{C} / \mathrm{Fe}]$ from non-detections of the G-band. Bottom: Measured cumulative CEMP fraction as a function of $[\mathrm{Fe} / \mathrm{H}]$ for our Sculptor sample (blue) and the Milky Way halo from Placco et al. (2014) (black). The shaded blue region corresponds to the 95% confidence interval of our measured CEMP fraction.

Chiti et al. 2018, subm

MAGELLAN OBSERVATIONS OF RETICULUM II STARS

Simon et al. 2015: radial velocity members confirm Ret II to be a galaxy Brightest members ($\mathrm{V}=17-19$) observable with high-resolution spectroscopy => Ji et al. (2015) spent 2-3 hours on each of 9 brightest targets ($\sim 23 \mathrm{~h}$)

Color-magnitude-diagram of Ret II (red = confirmed members)

Clay 6.5m Magellan telescope (on left) at Las Campanas Observatory, Chile

ALL SEVEN RET II STARS DISPLAY. \because THE R-PROCESS PATTERN

RET II AbUNDANCES CONSISTENT W/ NEUTRON-STAR MERGER YIELD

RARE AND PROLIFIC JET-DRIVEN SUPERNOVA REMAINS POSSIBILITY

...but ordinary supernovae remain ruled out!

ENRICHMENT AND STAR FORMATION TIMELINE

Stars form from enriched gas

~13 Gyr of galaxy assembly

Stars form from enriched gas

...are found in the Milky Way today

The Big Question

\star What is the (dominant) astrophysical site of the r-process?
\Rightarrow Core-collapse supernovae
\Rightarrow Neutron star mergers
\Rightarrow Others (e.g., jet-driven supernovae)
\star What is the rate and yield of the event?
\star Is the dominant site changing over cosmic time?

ANSWERS TO THE BIG QUESTION

* What is the (dominant) astrophysical site of the r-process?
\Rightarrow Core-collapse supe - No, but a rare and prolific site
\Rightarrow Neutron star me-Consistent w/ Ret II abundances
\Rightarrow Others (e.g., jet-driven super - Remain possible
\star What is the rate and yield of the event?
$-\quad \sim 1$ event per $2000 \mathrm{SN} ; \sim 10^{-2.5} \mathrm{M}_{\text {sun }}$ of r-process
\star Is the dominant site changing over cosmic time?
-Probably not!

IS RETICULUM II THE ONLY R-PROCESS GALAXY?

Nope!

Feb 2017: newly discovered UFD Tucana III hosts at least 1 mildly r-process enriched star with $[\mathrm{Fe} / \mathrm{H}]=-2.25$!
=> 2/12 UFDs show strong r-process enrichment

IS ANYBODY OUT THERE...?

IF there were any low-mass first stars, e.g. 0.6-0.8 Msun, they would have a current age of ~ 13 billion years
=> They would principally be observable!

Big questions

Do they actually exist??
Are there enough left??
Where are they located??
All very speculative...
but that has never stopped theorists to explore it anyway!

Fragmentation of accretion disk during massive first star formation (in 20% of cases Clark+11, Stacy +14)
=> Clumps form which collapse under gravity
=> Evolve into low-mass stars smaller than Sun

Table 1. Formation times, final masses and distances from the main sink.

Sink	$t_{\text {form }}(\mathrm{yr})$	$M_{\text {final }}\left(\mathrm{M}_{\odot}\right)$	$r_{\text {init }}(\mathrm{au})$	$r_{\text {final }}(\mathrm{au})$
1	0	43	0	0
2	300	13	60	700
3	3700	1.3	930	1110
4	3750	0.8	740	890
5	4400	1.1	270	240

Note. We include all sinks still present at the end of the simulation.

Asterisks: location of most massive sink

Crosses: location of second most massive sink

Diamonds: locations of another sink

WHERE WOULD THEY B.E LOCATED?

Milky Way: 93 red giant first stars
Dwarf galaxies: $0.1-0.6$ red giant first stars per galaxy

Best way forward: Dwarf galaxies

But observationally extraordinarily challenging because dwarf galaxy stars are very faint -- need to push to unprecedented levels to catch all red giant stars in system :(

However, with the Giant Magellan Telescope this would be a piece of cake!

CONCLUSIONS

CEMP stars are found in all populations!

Sculptor has a CEMP-no fraction of 30-40\%, likely similar to halo UFD population has ~25\%
=> Origin of CEMP stars might lay in dwarf galaxies but more data is needed to confirm this. Light element abundance have already suggested, though.

In other news:

- r+s stars do exist!
- The first stars may have all exploded aspherically => inhomogeneous metal mixing
... get all your abundance needs from JINAbase!

