The Peculiar Evolution of Low Mass EMP Stars

Simon W. Campbell Monash Centre for Astrophysics

Low-mass EMP/Z=0 Modelling (to 2006) Standing on many shoulders :)

Year	Author	Mass	Metallicity	Max. Evolution	Helium
1961	Ezer (1961)	$1 \rightarrow 2000$	zero	ZAMS	0.0
1971	Ezer and Cameron	$5 \rightarrow 200$	zero	MS	0.2
1972	Ezer	3.0	zero	CHeB	0.2
1974	Cary	$2 \rightarrow 20$	zero	ZAMS	0.0, 0.23, 0.3
1974	Wagner	$0.65 \rightarrow 2.5$	-6, -4, -2	RGB	0.26
1975	Castellani and Paolicchi	$1 \rightarrow 100$	zero	ZAMS	0.0, 0.2, 0.4
1981	Eryurt-Ezer	3.0	zero	EAGB	0.2
1982	D'Antona and Mazzetelli	0.9, 1.0	zero	$RGB, \sim DCF$	0.2
1983	Guenther and Demarque	0.9	zero	MS	0.2
1984	Chieffi and Tornambe	5.0	zero	$\sim AGB$	0.2
1985	Eryurt-Ezer and Kiziloglu	5, 7, 9	zero	CHeB	0.2
1986	Tornambe and Chieffi	$2.5 \rightarrow 8.0$	-6, -4, -2	EAGB	0.2
1987	Kiziloglu and Eryurt-Ezer	$0.2 \rightarrow 0.8$	zero	MS	0.2
1990	Fujimoto et al.	1.0	zero	$\sim m DCF$	0.23
1990	Hollowell et al.	1.0	zero	DCF	0.23
1993	Cassisi and Castellani	$0.7 \rightarrow 15$	-8, -4, -2	RGB/EAGB	0.23
1996	Cassisi et al.	$0.7 \rightarrow 1.1$	-8, -4, -3	\sim DSF (M=0.8)	0.23
1998	Fujimoto and Iben	$0.8 \rightarrow 4$	zero	RGB/AGB	0.23
2000	Fujimoto et al.	$0.8 \rightarrow 4$	zero, -4, -2	DCF/DSF	0.23
2000	Weiss et al.	$0.8 \rightarrow 1.2$	zero	RGB	0.23
2001	Marigo et al.	$0.7 \rightarrow 100$	zero	$\sim AGB (no CHeF)^a$	0.23
2001	Chieffi et al.	$4 \rightarrow 8$	zero	$DSF, \sim AGB$	0.23
2001	Schlattl et al.	$0.8 \rightarrow 1.0$	zero	DCF, SRGB, $\sim AGB$	$0.23 \rightarrow 0.25$
2001	Goriely and Siess	3	zero	AGB s-process ^{b}	0.23
2002	Siess et al.	$0.8 \rightarrow 20$	zero	$DSF, \sim AGB$	0.235
2002	Schlattl et al.	0.8	zero, -3, -2	DCF	0.23
2003	Herwig	2 & 5	zero	$DSF, \sim AGB$	0.23?
2004	Iwamoto et al.	$1 \rightarrow 3$	-2.7	$DSF, \sim AGB$	0.24
2004	Picardi et al.	$0.8 \rightarrow 1.5$	zero, -6, -5, -4	DCF, SRGB, \sim EAGB	0.23 & 0.27
2004	Weiss et al.	0.82	zero, -5	DCF, SRGB	0.23?
2004	Suda et al.	$0.8 \rightarrow 4.0$	zero	\sim DSF, \sim DSF, \sim AGB	0.23?
2006	Campbell (This study)	$0.8 \rightarrow 3+^{c}$	zero, -6, -5, -4, -3	DCF, DSF, SRGB, AGB & Yields	0.245

PhD Thesis: Low mass EMP Stellar Evolution & Nucleosynthesis

During my thesis I calculated a grid of stellar models including:

- Structural evolution from MS to end of TP-AGB
- Nucleosynthetic evolution for nuclides up to Sulphur 35
- Yields for the 74 included species

Stellar structure code: MONSTAR (Monash/Mt Stromlo code)

Nucleosynthesis code: MONSN ('monsoon', Monash code)

The metallicity and mass range of the grid:

$$[Fe/H] = -\infty, -6.5, -5.45, -4.0, -3.0$$

$$M = 0.85, 1.0, 2.0, 3.0 M_{\odot} \rightarrow 20 Stars$$

My thesis: <u>http://users.monash.edu.au/~scamp/downloads/phd-thesis-Campbell.pdf</u> Also see Campbell & Lattanzio 2008, Campbell et al. 2010

Peculiar Evolution Example I: 0.85 M . Population III Star

NB: Using this zero metallicity model as an example, EMP stars show similar evolutionary properties.

Overview of evolutionary phases: The Sun

Pop III (Z=o) 0.85 M_{\odot} : MS to RGB Tip

<u>'Normal' star versus Pop III star: Hydrogen burning</u>

- Typical Halo star mass
- Z=o star has:
 - Higher luminosity
 - Higher surface temperature.
 - RGB tip luminosity ~ 1 dex lower.
- Major factor altering the evolution is the lower opacity of the metal-free gas.
- On the RGB the lack of CNO elements precludes the Z=o star from burning H via the CNO cycles – until the shell becomes so hot that (some) He burning starts!

Z=0, 0.85 M_{\odot} : Internal Structure, MS

pp-chains have a *much* weaker T dependence than CNO cycle \rightarrow fundamental change in structure.

Blue = Zero metallicity Dashed = GC metallicity

- Snapshot near end of MS
- At this stage the 'normal' star is switching to CNO H burning
- The Z=o star cannot do this, so it continues to burn via the pp-chains, which creates a marked difference in structure

Z=0, 0.85 M_{\odot} : Internal Structure on RGB

- Red giant branch structure is also very different
- The shell hydrogen burning happens over a relatively wide region of the star, again due to the pp chain reactions being only weakly sensitive to temperature, compared to the CNO cycle

m/M_{sun}

Z=0, 0.85 M_{\odot} : Core He Flash!

- At the top of the RGB He ignites violently, due to (partial) degeneracy of core material.
- In the Z=0 model this happens much further from the centre of the star...

Z=0, 0.85 M_{\odot} : Core He Flash is not normal!

The EMP "Dual Core Flash" (DCF)

- The mixing of protons downwards into high temperature regions naturally causes very rapid H burning.
 - \rightarrow Hydrogen Flash!
- The He flash is still ongoing → hence name 'dual flash'.
- He burning products are mixed upwards also.
- This material is later dredged up into the envelope, polluting the surface.
- Fujimoto et al. (1990) suggested that the excess C in the CEMPs may come from these peculiar proton ingestion events (PIEs).

Again, this unique to EMP stars!

Possible s/r-Process during the DCF?

- Fujimoto et al. (1990) also speculated that light s-process elements may be produced during a DCF, since the protons should react with the ¹²C produced by the He burning, to produce ¹³C.
- In this model I found that ¹³C was produced in large amounts, and that the neutron-producing reaction ¹³C(α,n)¹⁶O was very active during a DCF.
- Interestingly the neutron density in this rough plot from my thesis is ~10¹⁴ cm⁻³.
- This neutron density is much higher than s-process densities!
- But not as high as needed for the r-process.
- This simulation had a limited nuclear network, so more investigation was required..

EMP "Neutron Superburst"

Campbell, Lugaro & Karakas 2010

- Larger network confirmed the high neutron densities: 10¹⁴ to 10¹⁵ cm⁻³
- So intermediate between s & r-process.
- Is this the site for CEMP i-process? – see Melanie Hampel's talk tomorrow.

CEMP s/r Mystery & the Neutron Superburst

soon :)

Fig. 10. Distribution of [Ba/Fe] vs. [Eu/Fe]. The red distribution represents our default model A. The grey distribution is computed with an initial enhancement of $[r/Fe]_{ini} = 1$. The dotted lines indicate the

Abate, Pols, Stancliffe et al., 2015

The Monash Chemical Yields Project

 $\operatorname{Mon}_{\operatorname{S}} X_{\operatorname{ey}}$

Angelou, Campbell, Church, Constantino, Cristallo, Doherty, Gil-Pons, Henkel, Karakas, Lattanzio, Lugaro, Stancliffe

MonXey Grid: Proton ingestion episodes (PIEs)

Mon χ ey Grid

 $Z=0, 0.85 M_{\odot}: AGB$

- AGB phase is fairly normal, since surface has quite high metallicity after the DCF (Z~1e-3)
- No third dredge-up in this model -- similar to high metallicity stars.
- Thus the mass lost through AGB winds has the composition of the DCF pollution: primarily C + s/i-process.
- This is unique to EMP stars.

Peculiar Evolution II: Evolution of a 2.0 M_o Pop III Star (short :)

Z=0, 2.0 M_{\odot} : MS to EAGB

- Z=o star evolves in the opposite direction on the MS (more typical of lower-mass, ppburning stars).
- Ignites He on the MS!
- Also it ignites He in the core before it can become a Red Giant → no RGB!
- Therefore it spends almost all its lifetime in the blue (more typical of a highermass star with solar Z)

The EMP AGB Dual <u>Shell</u> Flash (DSF)

- Similar to the Dual Core Flash but this time it is the AGB shell helium flash convective zone that breaks through the H-He discontinuity
- Occurs during first few pulses of TPAGB.
- Again protons are mixed down, He burning products mixed up: So may also produce s/i-process.
- This material is also later mixed up into the envelope, polluting the surface.

AGB Stellar Structure Model:

 $M = 2.0 M_{\odot}$ [Fe/H] = -4.0

$Z=0, 2.0 M_{\odot}: AGB$

- At this higher mass TDU does occur, so the surface metallicity continually increases (initially lots of C).
 - Interestingly Hot Bottom Burning (HBB) also occurs, even at this relatively low mass of 2 M_{\odot} ! (usually only above 4 M_{\odot} at solar Z). This means C \rightarrow N.
- In terms of enrichment of the AGB winds the TDU + HBB dominates over the DSF pollution.

Final Section: Overview of the chemical consequences of the peculiar EMP evolution

Carbon Yields Across the Grid of Models Yield data for many elements are available in Campbell & Lattanzio 2008

Non-Fe-scaled Carbon Yields (for Tim)

Dotted line = Solar **Red = Dual core flash pollution** Blue = Dual shell flash pollution Green = Third dredge-up/HBB pollution

• Carbon pollution is ubiquitous & often reaches close to absolute solar abundance – even at Z=0.0!

• This 'upper envelope' of C pollution is fixed by the amount of C produced in the stellar interior, which doesn't change much with metallicity.

Summary in Mass-Metallicity Plane

Campbell & Lattanzio 2008

•Pollution summary for the grid of models in the initial mass-[Fe/H] plane.

•Colour-coded by pollution events that contribute the most to the yields:

DCF = "Dual Core Flash" (RGB TIP) DSF = "Dual Shell Flash" (start of AGB) 3DU = "Third dredge-up" (AGB) HBB = "Hot Bottom Burning" (AGB)

DCF & DSF are peculiar to EMP models

Getting the C to the EMPs: Binary mass transfer

- Stars of mass > about 0.85 Msun could have been mass donors to the currently observed CEMPs
- Roughly 50% of binary interaction occurs on AGB (Onno's talk), and given the extra sources of C in EMP stars (DCF, DSF), CEMPs would be expected to be more common at low metallicity.
- s/i-process production is also expected, in combination with the C.
 - → CEMP-s explanation. Could this be an explanation for CEMP-i also?

Question: are all CEMP-i stars in binary systems?

Credit: Star Trek TNG

Model Yields Vs Observations: [C/Fe]

BUT: Wako & Camilla pointed out today that CEMP-s.-i are mainly restricted to [Fe/H] > -4.0. So there's a problem if i-process is made in all of these stars!

Models vs Observations: The [C/N] Constraint

Summary/Fin

• Many EMP stellar models show violent burning episodes that lead to severe surface pollution – the "Dual Flashes"

 \rightarrow More ways to produce C & s/i-process isotopes at low [Fe/H].

- High neutron exposures in the dual flashes ('neutron superbursts') appear to give i-process like heavy element patterns.
- Only the models undergoing the Dual *Shell* Flash (early AGB) come close to matching the observed CEMPs at [Fe/H] > -5.0, since they produce large amounts of C as well as N, but keep N < C.
- WARNING: *Many model uncertainties*, and a huge chemical parameter space to match I've only mentioned a few elements here..

My thesis: http://users.monash.edu.au/~scamp/downloads/phd-thesis-Campbell.pdf