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Low-mass EMP/Z=0 Modelling (to 2006)
Standing on many shoulders :)

Author Mass Metallicity Max. Evolution Helium
Ezer (1961) 1 — 2000 ZEero ZAMS 0.0
Ezer and Cameron 5 — 200 ZEro MS 0.2
Ezer 3.0 ZEero CHeB 0.2
Cary 2—20 ZETO ZAMS 0.0,0.23,0.3
Wagner 0.65 — 2.5 —6, —4, -2 RGE 0.26
Castellaml and Paolicchi 1 — 100 ZETO ZAMS 0.0,0.2,04
Eryurt-Ezer 3. ZETO EAGB 0.2
D’Antona and Mazzetelll 9,1, ZETO RGB, ~DCF 0.2
Guenther and Demarque . ZETO MS 0.2
Chieffi and Tornambe 5. ZEero ~AGB 0.2
Eryurt-Ezer and Kiziloglu 57, ZEero CHeB 0.2
Tornambe and Chieffi R 3. —6, —4, -2 EAGB 0.2
Kiziloglu and Eryurt-Ezer : R, ZEro MS 0.2
Fujimoto et al. . ZETO ~DCF 0.23
Hollowell et al. . ZEero DCF 0.23
Cassisi and Castellani i ! —8,—4, -2 RGB/EAGB 0.23
Cassisi et al. T 1. —8, —4, -3 ~DSF (M=0.8) 0.23
Fujimoto and Iben R: : ZEero RGB/AGB 0.23
Fujimoto et al. £ 4 zero,—4, —2 DCF /DSF 0.23
Weiss et al. ZETO RGB 0.23
Marigo et al. 0.7 — 100 ZETO ~AGB (no CHeF)® 0.23
Chiefli et al. 4 — 8 ZETO DSF., ~AGB 0.23
Schlattl et al. 0.8—1.0 ZEero DCF, SRGB, ~AGB 0.23 — 0.2
Goriely and Siess 3 ZETO AGB s-process® 0.23
Siess et al. 0.8 — 20 ZEeT0 DSF, ~AGB 0.235
Schlattl et al. 0.8 zero, —3, —2 DCF 0.23
Herwig 2&5 ZEero DSF, ~AGB 0.237
Iwamoto et al. 1—3 2.7 DSF, ~AGB 0.24
Picardi et al. 08 —=15 zero,—6, -5, —4 DCF, SRGB., ~EAGB 0.23 & 0.27
Weiss et al. 0.82 zero, -H DCF, SRGB 0.237
Suda et al. 0.8 —=4.0 ZETO ~DSF, ~DSF, ~AGB 0.237
Campbell (This study) 0.8 — 3+° | zero, —6,—5,—4,—3 | DCF, DSF, SRGB, AGB & Yields 0.245




PhD Thesis:
Low mass EMP Stellar Evolution & Nucleosynthesis

During my thesis I calculated a grid of stellar models including:
» Structural evolution from MS to end of TP-AGB
» Nucleosynthetic evolution for nuclides up to Sulphur 35
> Yields for the 74 included species

Stellar structure code: MONSTAR (Monash/Mt Stromlo code)

Nucleosynthesis code: MONSN (‘monsoon’, Monash code)

The metallicity and mass range of the grid:

}[ — [)Hr.:l l[) 2[) “:]H) :\LE? - 20 Stars

Also see Campbell & Lattanzio 2008, Campbell et al. 2010


http://users.monash.edu.au/~scamp/downloads/phd-thesis-Campbell.pdf

\ Peculiar Evolution Example I:
. 0.85 M, Population III Star

NB: Using this zero metallicity model as an example,
EMP stars show similar evolutionary properties.




Overview of evolutionary phases: The Sun

Asymptotic giant branch
(AGB, H & He shell burn)

5[ Core He Burn (‘Red clump’) Helium Core Flash™
(RGB tip)

RGB (shell H burn)

— MS (current Sun, core H burn)
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Pop III (Z=0) 0.85 M _: MS to RGB Tip

'Normal' star versus Pop III star: Hydrogen burning
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« Typical Halo star mass

o 7=0 star has:

« Higher luminosity

« Higher surface
temperature.

« RGB tip luminosity ~
1 dex lower.

« Major factor altering the
evolution is the lower
opacity of the metal-free
gas.

« On the RGB the lack of
CNO elements precludes
the Z=o star from burning
H via the CNO cycles -
until the shell becomes so
hot that (some) He
burning starts!



/=0, 0.85 M _: Internal Structure, MS

pp-chains have a *much* weaker T
dependence than CNO cycle =2
fundamental change in structure.
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Blue = Zero metallicity
Dashed = GC metallicity

« Snapshot near end of MS

o At this stage the 'normal’ star is
switching to CNO H burning

« The Z=o0 star cannot do this, so it
continues to burn via the pp-chains,
which creates a marked difference in
structure
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/=0, 0.85 M _: Internal Structure on RGB

* Red giant branch structure is also very different

* The shell hydrogen burning happens over a relatively wide region of the
star, again due to the pp chain reactions being only weakly sensitive to
temperature, compared to the CNO cycle
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/=0, 0.85 M : Core He Flash!

« At the top of the RGB He ignites violently, due to

(partial) degeneracy of core material.
 Inthe Z=0 model this happens much further from the

centre of the star... odolTar ()
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Core He Flash
(RGB tip)

M = 0.85 Msun h Normal star — £=0.0
CHeF Peak I\ - —-7Z=0.0017

I\
I\ /=0 star

Ignition way off-centre




Z=0, 0.85 M : Core He Flash is not normal!

Comparison between a Z=0/EMP star

and a GC metallicity star

I LHmax
— — - LHemax

« Grey = convection
« Blue line = H burn
« Dashed line = He burn

Convection breaks out of core! —

Mixes protons down to region burning
helium: VERY HOT for H (~100 MK,
normally H burns at ~20 MK)

This is unique to EMP stars!




The EMP “Dual Core Flash” . Campbell& Latianzioz0o8
(DCF) |

» The mixing of protons downwards
into high temperature regions
naturally causes very rapid H
burning.

06" pual Core Flash

Dredge-up

H-He boundary

— Hydrogen Flash!

« The He flash is still ongoing =
hence name 'dual flash’.

« He burning products are mixed
upwards also.

 This material is later dredged up
into the envelope, polluting the
surface.

 Fujimoto et al. (1990) suggested that
the excess C in the CEMPs may come
from these peculiar proton ingestion

events (PIEs). Again, this unique to EMP stars!




M = 085 Mgun
Z=0.0
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Campbell 2007 (PhD thesis)

Possible s/r-Process
during the DCF?

Fujimoto et al. (1990) also
speculated that light s-process
elements may be produced during
a DCF, since the protons should
react with the 2C produced by the
He burning, to produce 3C.

In this model I found that 3C was
produced in large amounts, and
that the neutron-producing
reaction 3C(a,n)®O was very
active during a DCF.

Interestingly the neutron density
in this rough plot from my thesis
1s ~10" cm3.

This neutron density is much
higher than s-process densities!

But not as high as needed for the
r-process.

This simulation had a limited
nuclear network, so more
investigation was required..



N, (n/cm3)

EMP “Neutron Superburst”

208pp
1355‘»:—1
. 56 Fe

Neutron density in core vs. time

0.10
Time (yr)

Campbell, Lugaro & Karakas 2010

Larger network
confirmed the high
neutron densities:

104 to 105 cm3
So intermediate
between s & r-process.
Is this the site for
CEMP i-process? - see
Melanie Hampel’s talk
tomorrow.



CEMP s/r Mystery & the Neutron Superburst

No neutron
superburst yields
included in the
population
synthesis — not
expected at higher
[Fe/H] that this
study focussed on?

DCF neutron superburst model!
At [Fe/H] = -5.8
(Campbell, Lugaro & Karakas 2010)

* Undiluted Z=0
model produced
5.1: 4.3, SO ON same
line.

* More metal-rich’

Fig. 10. Distribution of [Ba/Fe] vs. [Eu/Fe]. The red distribution rep- models coming
resents our default model A. The grey distribution is computed with soon :)
an initial enhancement of [r/Feliyi = 1. The dotted lines indicate the

Abate, Pols, Stancliffe et al., 2015
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/=0, 0.85 M _: AGB

Convective Envelope

7.0 7.5

Time (Myr) |

AGB phase is fairly
normal, since surface has
quite high metallicity

after the DCF (Z~1e-3)

No third dredge-up in this
model -- similar to high
metallicity stars.

Thus the mass lost
through AGB winds has
the composition of the
DCF pollution: primarily
C + s/i-process.

This is unique to EMP
stars.



Peculiar Evolution II:

Evolution of a 2.0 M

Pop III Star
(short :)




Z=0,2.0 M_: MS to EAGB

M = 2.0 Msun
MS to EAGB
Mini He—-Shell Flashes

CNO MiniFlash
Z=0 star

'normal’ star
([Fe/H] = -1.4)

Z=o star evolves in the
opposite direction on
the MS (more typical
of lower-mass, pp-
burning stars).

Ignites He on the MS!

Also it ignites He in
the core before it can
become a Red Giant

— no RGB!

Therefore it spends
almost all its lifetime
in the blue (more
typical of a higher-
mass star with solar Z7)
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The EMP AGB

Dual Shell Flash (DSF)

Similar to the Dual Core
Flash but this time it is the
AGB shell helium flash
convective zone that breaks
through the H-He
discontinuity

Occurs during first few pulses
of TPAGB.

Again protons are mixed

down, He burning products
mixed up: So may also
produce s/i-process.

This material is also later
mixed up into the envelope,
polluting the surface.

AGB Stellar Structure Model:

M=2.0M,
[Fe/H] = -4.0




/=0,2.0 M _:AGB

o At this higher mass
TDU does occur, so
the surface metallicity

Conv. Envelope

continually increases
(initially lots of C).
—— H-Ex Core
He-Ex Core o Interestingly Hot
Bottom Burning
(HBB) also occurs,

even at this relatively
low mass of 2 M !
(usually only above 4
M, atsolar Z). This
means C=> N.

o In terms of
enrichment of the
AGB winds the TDU +
HBB dominates over
the DSF pollution.




\ Final Section:

Overview of the chemical
consequences of the peculiar EMP
evolution




Carbon Yields Across the Grid of Models

* Yield data for many elements are available in Campbell & Lattanzio 2008
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Non-Fe-scaled Carbon Yields (for Tim)

Dotted line = Solar

Blue = Dual shell flash pollution

* Carbon pollution is
ubiquitous & often reaches
close to absolute solar
abundance - even at Z=0.0!

* This ‘upper envelope’ of C
pollution is fixed by the amount
of C produced in the stellar
interior, which doesn’t change
much with metallicity.
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Summary in Mass-Metallicity Plane

Possible SNe 1.5, Pollution summary for the grid
see Gil-Pons+ 2013 of models in the initial mass-
[Fe/H] plane.

72
é) *Colour-coded by pollution
o events that contribute the most
%‘ to the yields:
A
— = “Dual Core Flash”
= (RGB TIP)
= DSF = “Dual Shell Flash”
(start of AGB)
3DU = “Third dredge-up”
(AGB)
HBB = “Hot Bottom Burning”
(AGB)

|Fe/H]

Campbell & Lattanzio 2008 DCF & DSF are peculiar to EMP models



Getting the C to the EMPs: Binary mass transfer

 Stars of mass > about 0.85 Msun could have been mass donors to the
currently observed CEMPs
« Roughly 50% of binary interaction occurs on AGB (Onno’s talk), and given
the extra sources of C in EMP stars (DCF, DSF), CEMPs would be expected
. to be more common at low metallicity.
'* s/i-process production is also expected, in combination with the C.
¢« - CEMP-s explanation. Could this be an explanation for CEMP-i also?

4— GROUP 2: DSF

4.0
o T T TR T r

[ GROUP 3: 3DUP+HBB 1 ]
L 1

3DUP+HBB Polluted AGB

IOg(L Lsun)
log(L/Lsun)
\

42 41 40 39 38 37 36

log(Tefr (K)) log(Tes (K)) Credit: Star Trek TNG




Model Yields Vs Observations: [C/Fe]

[C/H] = +1.0 MODELS
(Integrated Yields)

% DCF

& 0.85 : ¥ DSF ORSERVATIONS =

BUT: Wako & Camllla pointed out today that
CEMP-s.-i are mainly restricted to [Fe/H] > -4.0.

So there’s a problem if i-process is made in all of
these stars!

DO1IUt1Ion 1roim tne , WI [1 OI11Y dI't TO
occur at this metallicity (but many uncerts).

oL _

The carbon in the [Fe/H] = -4.0 & -3.0, 0.85 and 1 M
models comes from the DSFs = more C at low
metallicity since these episodes only occur in EMP stars.

[Fe/H]

Campbell & Lattanzio 2008




Models vs Observations: The [C/N] Constraint

High C and N T T T T | T T T T | T T T T | T T T T | T
- So can't be TDU.. MODELS OBSERVATIONS
(Integrated yields) P
— s

¥ DCF
¥ DSF
3DUP+HEB

Normal EMPs

® HE 0107-5240

Vi

W 0.85
®* HE 1327-2326

Poss5a1

(G/N) =1
CN Egm Line
(eg. HBB)

Not many 'NEMPs*? (old data?)
- IMF favours CEMP production?



Summary/Fin

Many EMP stellar models show violent burning episodes that lead to severe
surface pollution - the “Dual Flashes”

—> More ways to produce C & s/i-process isotopes at low [Fe/H].

High neutron exposures in the dual flashes (‘neutron superbursts’) appear to
give i-process like heavy element patterns.

Only the models undergoing the Dual Shell Flash (early AGB) come close to
matching the observed CEMPs at [Fe/H] > -5.0, since they produce large
amounts of C as well as N, but keep N < C.

WARNING: *Many model uncertainties*, and a huge chemical parameter space
to match - I've only mentioned a few elements here..




