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Statistical models are quantified by collections  
of  data generating processes, or likelihoods.
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Inference identifies the model configurations that yield 
data distributions consistent with a given measurement.
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For any given measurement, however, there will be many 
consistent configurations -- uncertainty is fundamental.
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Exactly how we define consistency, however,  
depends on how we define probability itself.



In frequentist statistics, probability is defined in terms of  
frequencies, and hence can be applied to only the data.
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Frequentist methods compute expectations with respect 
to the data to identify estimators that work well on average.
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Bayesian methods generalize the frequentist perspective, 
modeling the data and the parameters with probabilities.    
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The probability distribution encoding the consistency  
of  model configurations is given by Bayes' Theorem.
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Importantly, in a Bayesian analysis all inferential  
queries are answered by posterior expectations.
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Frequentist Bayesian

Design estimator, specify loss function, 
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Specify prior, compute posterior 
expectations

Maximum likelihood Laplace approximation, etc

Consequently we have very different computational 
problems from these two inferential approaches.
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Why Is Bayesian Computation So Hard?



Bayesian computation is hard because  
high-dimensional integration is hard.
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Computationally important regions are determined not  
by probability density but rather by probability mass.
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As the dimensionality of  the model increases, probability 
mass concentrates on a hypersurface called the typical set. 



The concentration of  probability mass into a singular 
typical set frustrates the accurate estimation of  integrals.



Markov chains, however, provide a particularly generic 
scheme for finding and then exploring this typical set.
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But practical performance depends on how quickly 
the Markov chain can explore the typical set.
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Hamiltonian Monte Carlo
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Creating such a vector field requires transforming 
available vector fields, such as the gradient.
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Differential geometry informs this transformation, 
although a physical analogy can be more intuitive.
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Just enough, however, aligns the gradients with the  
typical set and yields the desired orbital trajectory.
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 Stan is a high-performance C++ library for building 
models and fitting them with Hamiltonian Monte Carlo.
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Stan Physics Workshop in late summer somewhere in the 
NY/NE area -- think undergrad labs but with full  Bayesian 

analyses developed and fit in Stan.  If  interested see me!
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Formalizing Fast Enough



Under ideal conditions, MCMC estimators converge to 
the true expectations in a very practical progression.
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There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



 0  200  400  600  800  1000
Iteration

There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



 0  200  400  600  800  1000
Iteration

There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



 0  200  400  600  800  1000
Iteration

There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



 0  200  400  600  800  1000
Iteration

There are many pathological posterior geometries, 
however, that spoil these ideal conditions.



Geometric ergodicity ensures that there are no posterior 
pathologies obstructing accurate MCMC estimation.
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Unfortunately, common algorithms like  
Random Walk Metropolis are extremely fragile.
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