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Supervised learning

p(data|background+ signal)

p(data|background)
, Classifying background vs. signal

. # &

Boosted decision trees Conv. nets Recursive nets
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Independence from physics variates

Analysis often rely on the assumption that the classifier is
independent from some physics variates (e.g., mass).
Correlation with these variates leads to systematic uncertainties
that cannot easily be characterized and controlled.

Credits: 1703.03507, ATL-PHYS-PUB-2017-004
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https://arxiv.org/abs/1703.03507
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/


Independence from known unknowns

• The data generation process
is often not uniquely
specified or known exactly,
hence the presence of
systematic uncertainties.

• Data generation processes
are formulated as a family of
data generation processes
parametrized by nuisance
parameters.

• Ideally, we would like a
classifier that is robust to
nuisance parameters.

Credits: Kyle Cranmer
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Problem statement

• Let us assume a family of data generation processes
p(X ,Y ,Z ) where

X are the data (taking values x 2 X ),
Y are the target labels (taking values y 2 Y),
Z is an auxiliary random variable (taking values z 2 Z).

• Z corresponds to physics variates or nuisance parameters.

• We want to learn a regression function f (·; ✓f ) : X 7! Y.

• We want inference based on f (X ; ✓f ) to be robust to the
value z 2 Z.

E.g., we want a classifier that does not change with systematic
variations, even though the data might.
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Pivot

• We define robustness as requiring the distribution of f (X ; ✓f )
conditional on Z to be invariant with Z . That is, such that

p(f (X ; ✓f ) = s |z) = p(f (X ; ✓f ) = s |z 0)

for all z , z 0 2 Z and all values s 2 S of f (X ; ✓f ).
If f satisfies this criterion, then f is known as a pivotal
quantity.

• Alternatively, this amounts to find f such that f (X ; ✓f ) and Z
are independent random variables.
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Adversarial Networks

Classifier f

X

data

p(signal|data)

✓f

f (X ; ✓f )

Lf (✓f )

...

p(signal|data)

Regression of Z from f ’s output

Adversary r

�1(f (X ; ✓f ); ✓r )

�2(f (X ; ✓f ); ✓r )

. . .

✓r

...

Z

p✓r (Z |f (X ; ✓f ))

P(�1,�2, . . . )

Lr (✓f , ✓r )

Let consider a classifier f built as usual, minimizing the

cross-entropy L
f

(✓
f

) = E
x⇠XE

y⇠Y |x [- log p✓
f

(y |x)].
We pit f against an adversary network r producing as

output the posterior p✓
r

(z |f (X ; ✓
f

) = s).

We set r to minimize the cross entropy

L
r

(✓
f

, ✓
r

) = E
s⇠f (X ;✓

f

)Ez⇠Z |s[- log p✓
r

(z |s)].

Goal is to solve: ✓̂
f

, ✓̂
r

= arg min✓
f

max✓
r

L
f

(✓
f

)- L
r

(✓
f

, ✓
r

)

Intuitively, r penalizes f for outputs that can be used to infer Z .
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Theoretical motivation

Proposition. If there exists a minimax solution (✓̂f , ✓̂r ) such that
Lf (✓f )- Lr (✓f , ✓r ) = H(Y |X )- H(Z ), then f (·; ✓̂f ) is both an
optimal classifier and a pivotal quantity.

Proof (sketch):

min
✓f

max
✓r

Lf (✓f ) - Lr (✓f , ✓r )

=min
✓f

Lf (✓f ) - Es⇠f (X ;✓f )[H(Z |f (X ; ✓f ) = s)]

=min
✓f

Lf (✓f ) - H(Z |f (X ; ✓f ))

�H(Y |X ) - H(Z )

where the equality holds when

• f is an optimal classifier (in which case Lf (✓f ) = H(Y |X ));

• f (X ; ✓f ) and Z are independent random variables (in
which case H(Z |f (X ; ✓f )) = H(Z )).
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Alternating stochastic gradient descent

1: for t = 1 to T do

2: for k = 1 to K do . Update r
3: Sample minibatch {xm, zm, sm = f (xm ; ✓f )}Mm=1 of size M;
4: With ✓f fixed, update r by ascending its stochastic gradient r✓r E (✓f , ✓r ) :=

r✓r

MX

m=1

log p✓r (zm |sm);

5: end for

6: Sample minibatch {xm, ym, zm, sm = f (xm ; ✓f )}Mm=1 of size M; . Update f
7: With ✓r fixed, update f by descending its stochastic gradient r✓f

E (✓f , ✓r ) :=

r✓f

MX

m=1

⇥
- log p✓f

(ym |xm) + log p✓r (zm |sm)
⇤
,

where p✓f
(ym |xm) denotes 1(ym = 0)(1 - sm) + 1(ym = 1)sm;

8: end for
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Accuracy versus robustness trade-o↵

• The assumption of existence of a classifier that is both
optimal and pivotal may not hold.

• However, the minimax objective can be rewritten as

E�(✓f , ✓r ) = Lf (✓f )- �Lr (✓f , ✓r )

where � is a hyper-parameter controlling the trade-o↵
between the performance of f and its independence with
respect to the nuisance parameter.

Setting � to a large value enforces f to be pivotal.
Setting � close to 0 constraints f to be optimal.

• Tuning � is guided by a higher-level objective (e.g., statistical
significance).
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Architecture for the adversary

• If Z is categorical, then the
posterior can be modeled with a
standard classifier (e.g., a NN with
a softmax output layer).

• If Z is continuous, then the
posterior can be modeled with a
mixture density network.

• No constraint on the prior p(Z ).

Mixture density network
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Toy example

• Binary classification of 2D data drawn from
multivariate gaussians with equal priors, such
that

x ⇠ N
✓
(0, 0),


1 -0.5

-0.5 1

�◆
when Y = 0,

x ⇠ N
✓
(1, 1 + Z ),


1 0
0 1

�◆
when Y = 1.

• The continuous nuisance parameter Z represents
in this case our uncertainty about the exact
location of the mean of the second gaussian. We
assume a gaussian prior z ⇠ N (0, 1).

• We assume training data
{xi , yi , zi }

N
i=1 ⇠ p(X ,Y ,Z ).
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Standard training without the adversary r

(Left) The conditional probability distributions
of f (X ; ✓f )|Z = z changes with z .

(Right) The decision surface strongly depends on X2.
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Reshaping f with adversarial training

(Left) The conditional probability distributions
of f (X ; ✓f )|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of X2.
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Dynamics of adversarial training
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Physics example: pileup independence

• Discriminate between QCD jets
(Y = 0) and W -jets (Y = 1) from
high-level features (data from Baldi
et al, arXiv:1603.09349).

• Taking some liberty, we consider an
extreme categorical nuisance
parameter where

Z = 0 corresponds to events
without pileup,
Z = 1 corresponds to events with
pileup, for which there are an
average of 50 independent pileup
interactions overlaid.
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http://arxiv.org/abs/1603.09349


Maximizing significance by tuning �

• We optimize the accuracy-independence trade-o↵ by tuning �
with respect to a higher level objective.

• Cut and count analysis: Hypothesis test of a null with no
signal events against an alternate hypothesis that is a mixture
of signal and background events.

Background = 1000 weighted QCD jets, Signal = 100
weighted boosted W’s.
Without systematics, optimizing Lf indirectly optimizes the
power of a classical hypothesis test.
With systematics, we need to balance classification
performance against robustness to the nuisance parameter.
To this end, we use the Approximate Median Significance
(AMS) as higher-level objective.
Note that since we are performing a hypothesis test of the
null, we only wish to impose the pivotal property on
background events.
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� = 0|Z = 0: standard training from p(X ,Y ,Z = 0).
� = 0: standard training from p(X ,Y ,Z ).
� = 10: trading accuracy for robustness wrt pileup results in a net
benefit in terms of maximum statistical significance.
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Decorrelated Jet Substructure Tagging using Adversarial

Neural Networks (Shimmin et al, 1703.03507)

X Tagger profile is flatter
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Decorrelated Jet Substructure Tagging using Adversarial

Neural Networks (Shimmin et al, 1703.03507)

X Tagger profile is flatter X Background distortion
(standard neural net)
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Decorrelated Jet Substructure Tagging using Adversarial

Neural Networks (Shimmin et al, 1703.03507)

X Tagger profile is flatter X Background distortion is
reduced (adversarial net)
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https://arxiv.org/abs/1703.03507


Fairness in machine learning

• Learning to pivot extends beyond high energy physics.

• Example: predict whether someone makes over 50,000$ a year
from demographic data. We want to build a fair classifier,
that is independent of gender.

X Women are less likely than
men to make more than 50,000$
a year, because of gender bias in

the data.

X With adversarial training,
gender bias is corrected.

See Jupyter notebook
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https://github.com/glouppe/notebooks/blob/master/Fair%20classifier%20with%20adversarial%20networks.ipynb


Summary

• We proposed a principled approach based on adversarial
networks for building a model whose output can be
constrained to be independent of a chosen random variable.
E.g.:

a specific (physics) variate such as mass
a nuisance parameter

• The method supports both the categorical and continuous
cases.

• Control is o↵ered to tune the accuracy versus robustness
trade-o↵ in order to maximize a higher-level objective.
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