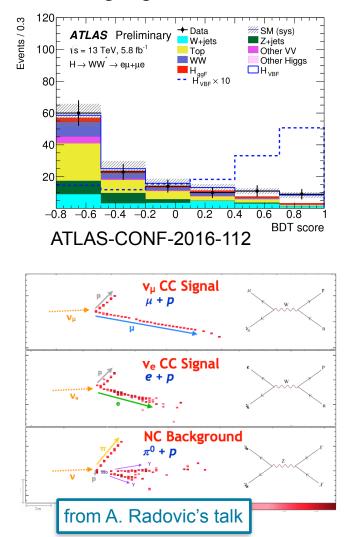
Weakly supervised classifiers learning from data and proportions

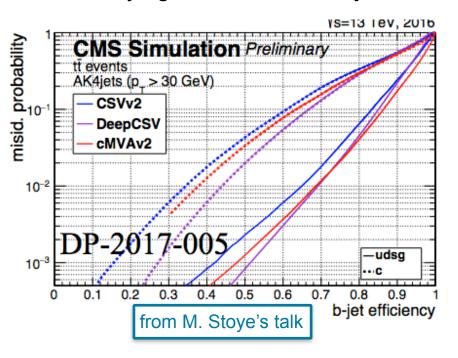
L. Dery (Stanford), B. Nachman (LBNL), F. Rubbo (SLAC), A. Schwartzman (SLAC)

Classification in HEP

Discriminating signal events from backgrounds

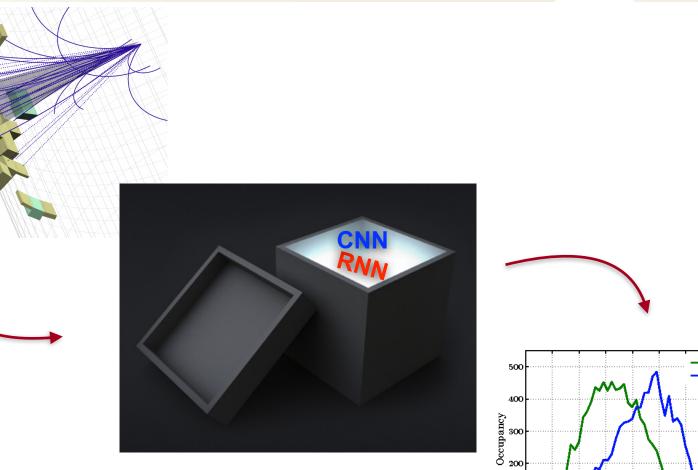


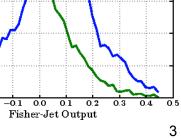
Classifying reconstructed objects



Jet classification example

CMS





100

0.4

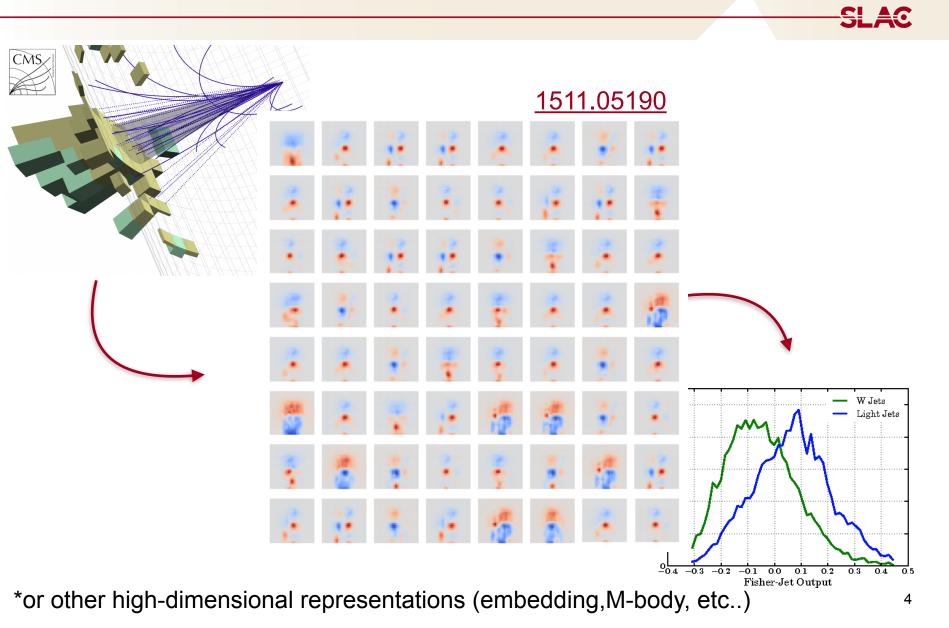
-0.3

-0.2

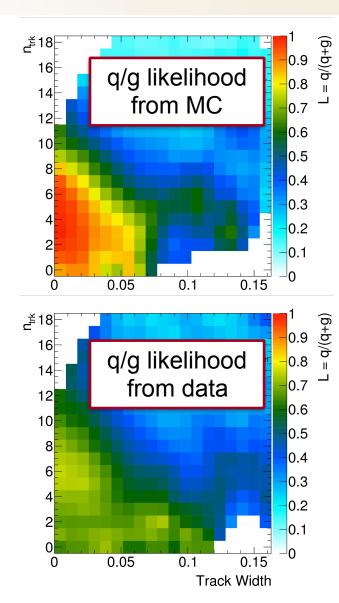
W Jets

Light Jets

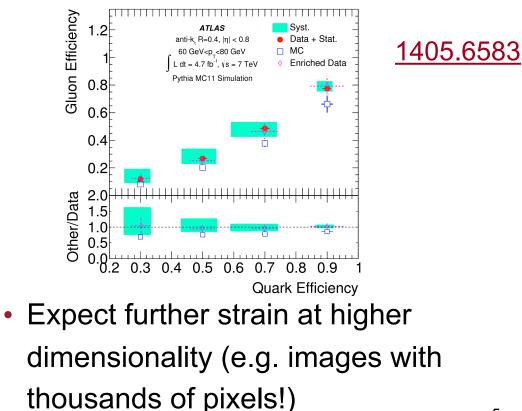
Jet classification example



Learning from simulation vs learning from data

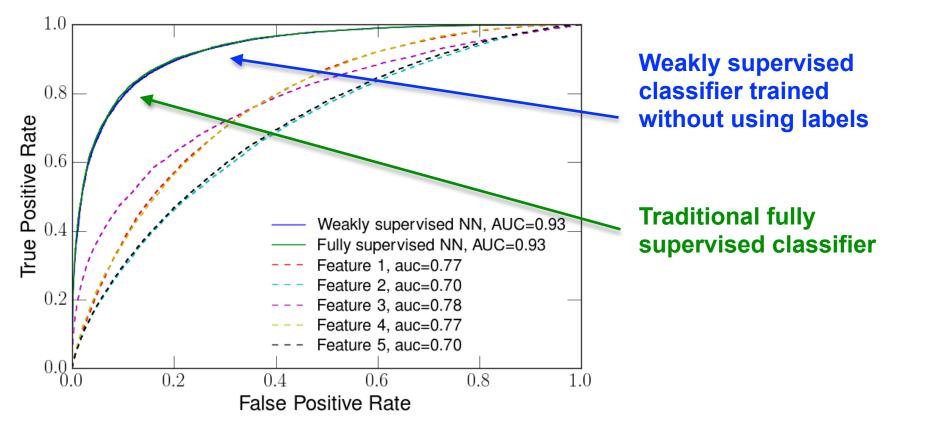


 Modeling of multi-dimensional soft QCD features (e.g. n_{track},w_{track}) is challenging for MC.



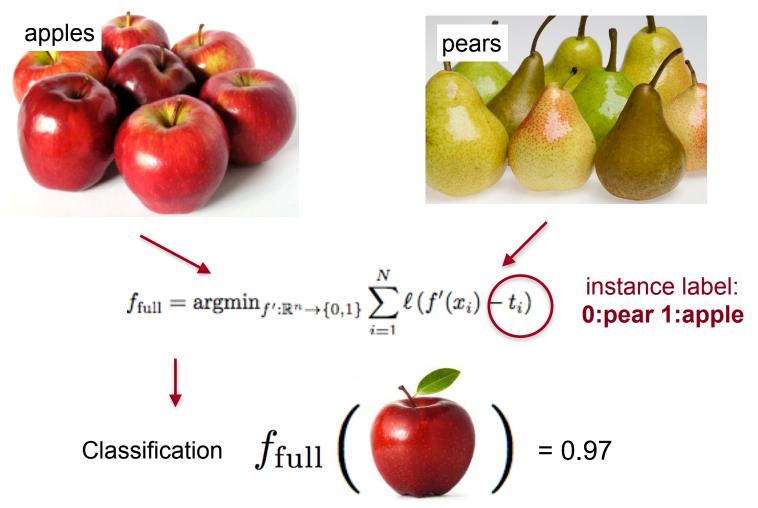
- Classifier is always suboptimal if distribution of training and test samples are different.
- Data is the perfect event "simulation": exactly the same distribution as in the test sample.
- N.B.: doesn't impact uncertainties, only the "central value" of the performance (i.e. how optimal is the discrimination in data)!
- N.B.2: for many applications simulation is very good and its distribution is close to data.

Learn directly from unlabeled data!

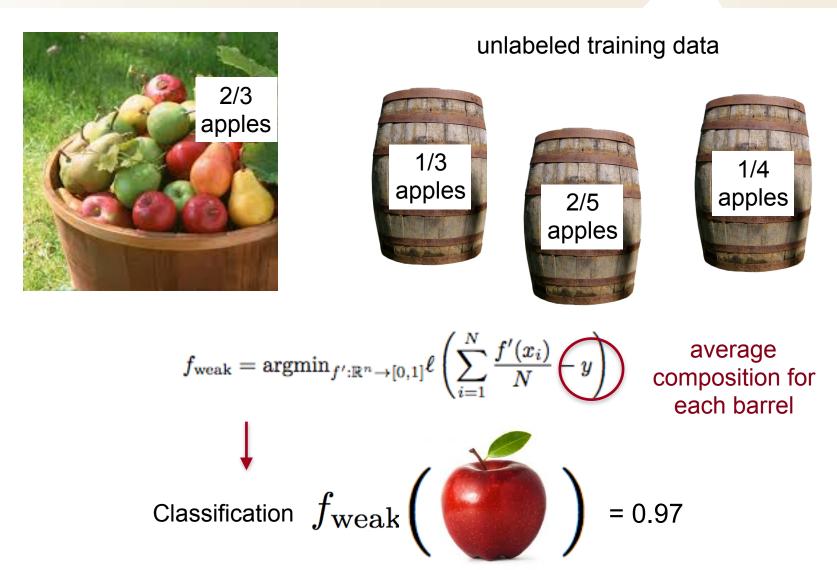


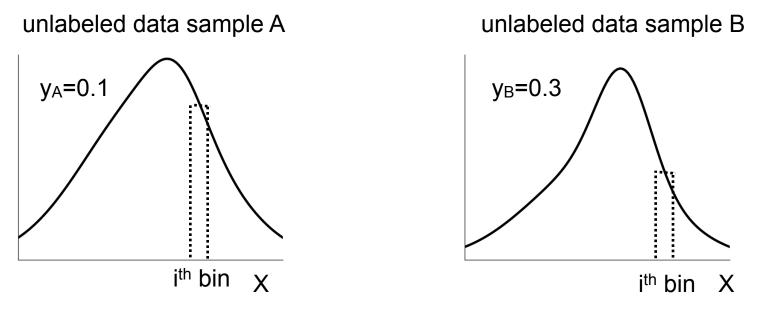
Traditional full supervision

Labeled training set ("simulation")



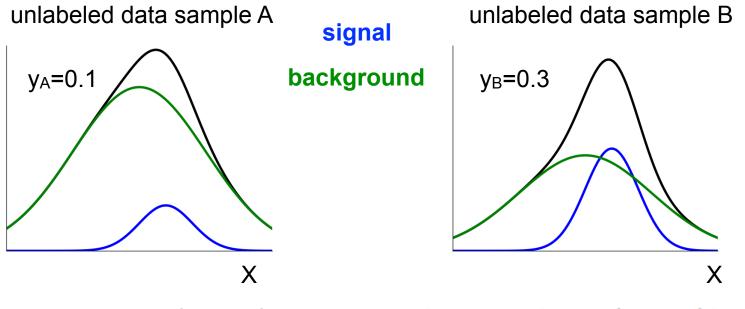
Weak supervision





 $h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$ $h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$

 Given two independent unlabeled data samples, and the corresponding proportion of signal, we can extract the signal and background distributions.



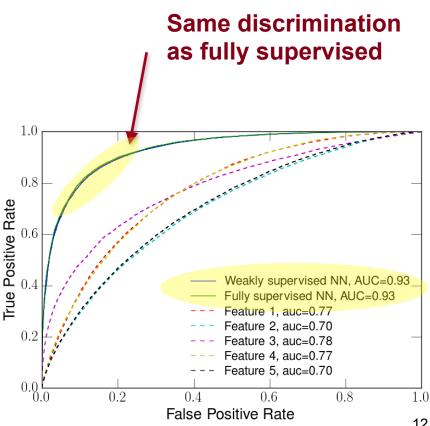
 $h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$ $h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$

- Given two independent unlabeled data samples, and the corresponding proportion of signal, we can extract the signal and background distributions.
- —> build Likelihood Ratio discriminant.

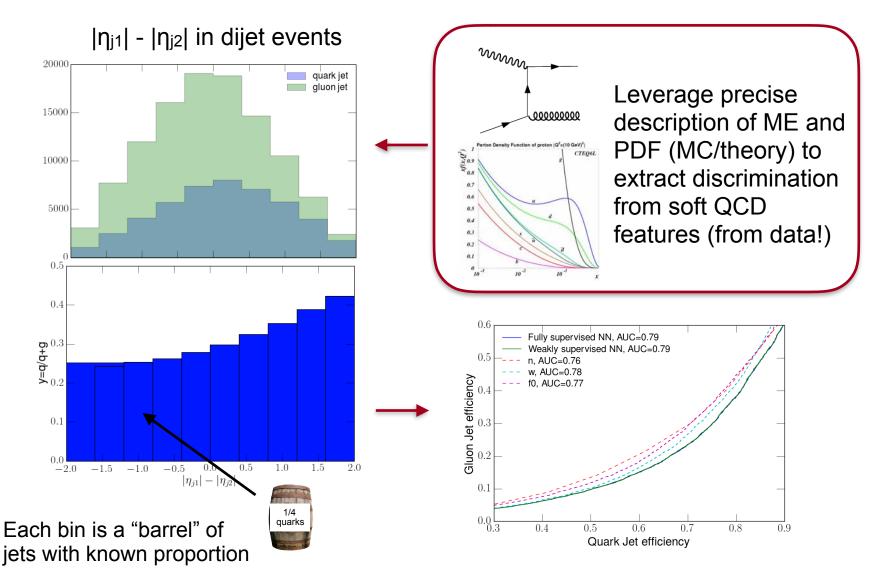
Weak supervision

- The analytic approach requires binning and becomes quickly unmanageable as the feature space grows.
- ML approach directly looks for discriminant, without extracting explicitly n-dimensional feature distributions for S and B.

$$egin{aligned} f_{ ext{full}} &= ext{argmin}_{f':\mathbb{R}^n o \{0,1\}} \sum_{i=1}^N \ell\left(f'(x_i) - t_i
ight) \ f_{ ext{weak}} &= ext{argmin}_{f':\mathbb{R}^n o [0,1]} \ell\left(\sum_{i=1}^N rac{f'(x_i)}{N} - y
ight) \end{aligned}$$

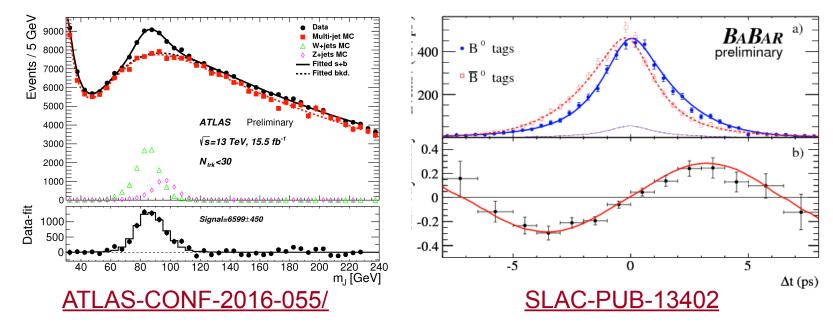


Weak supervision - q/g tagging



Summary

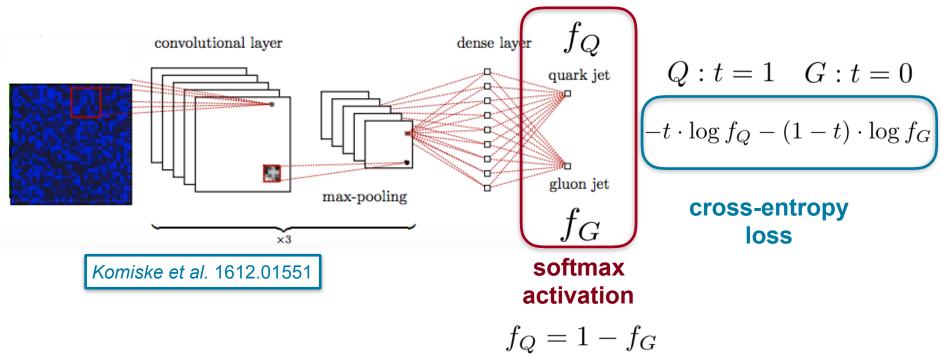
- Weak supervision is a new paradigm leveraging the class proportions in high-level observables in order to use unlabeled data to extract discriminating information from poorly modeled or unknown low-level observables.
- Multiple potential applications in HEP



[Work in progress with Dery, Komiske, Metodiev, Nachman, Schwartz] Next step: scaling to higher dimensionality

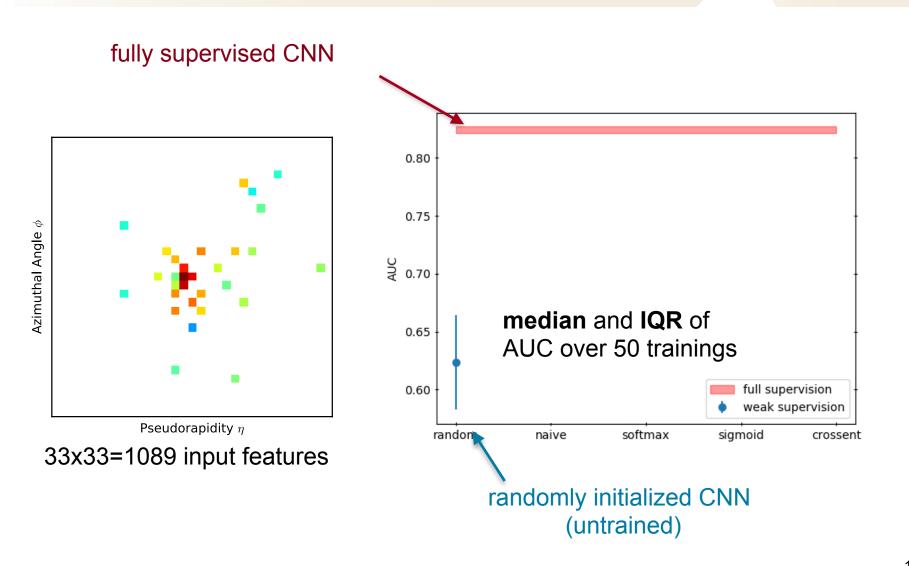
Quark/gluon jet tagging with jet images (grayscale) and CNN

Fully supervised network:



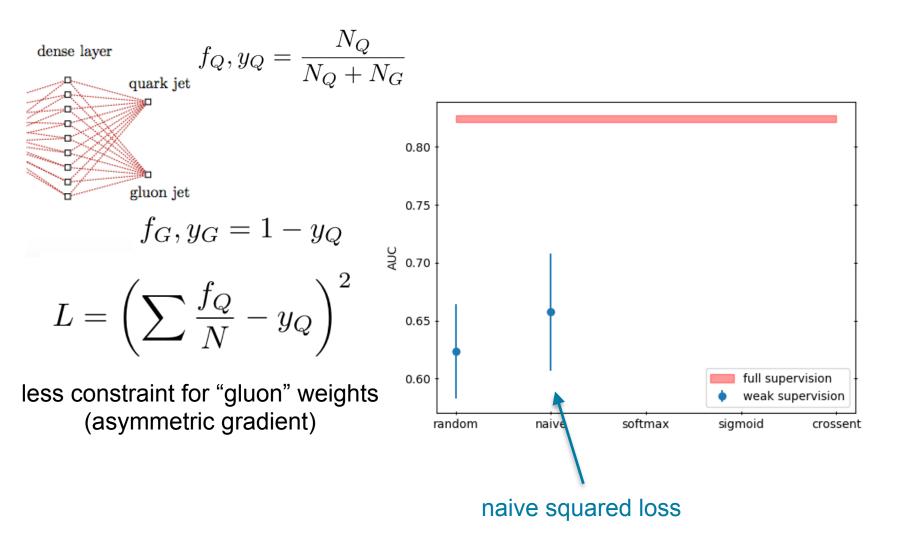
First look at weak supervision on same architecture in "ideal" conditions: **50 samples** with proportions in **[0,1]** (regularly spaced)

Jet image + weak supervision



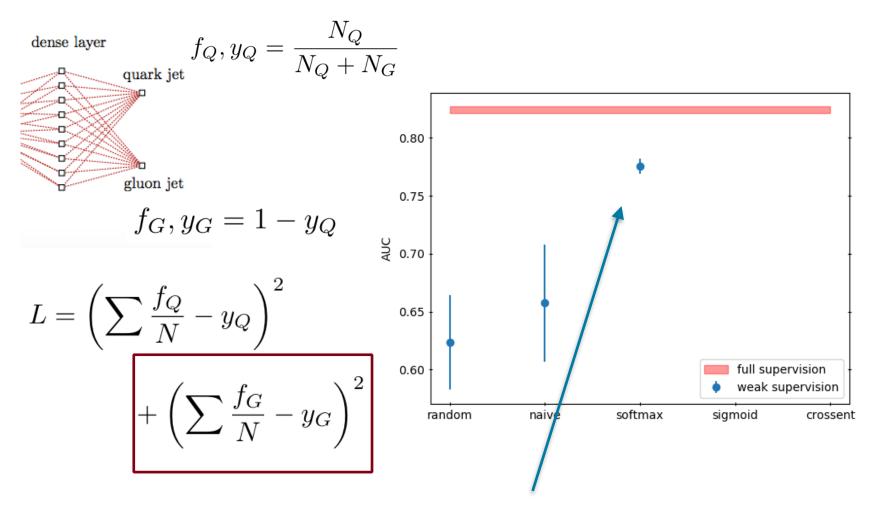
Jet image + weak supervision

-SLAC



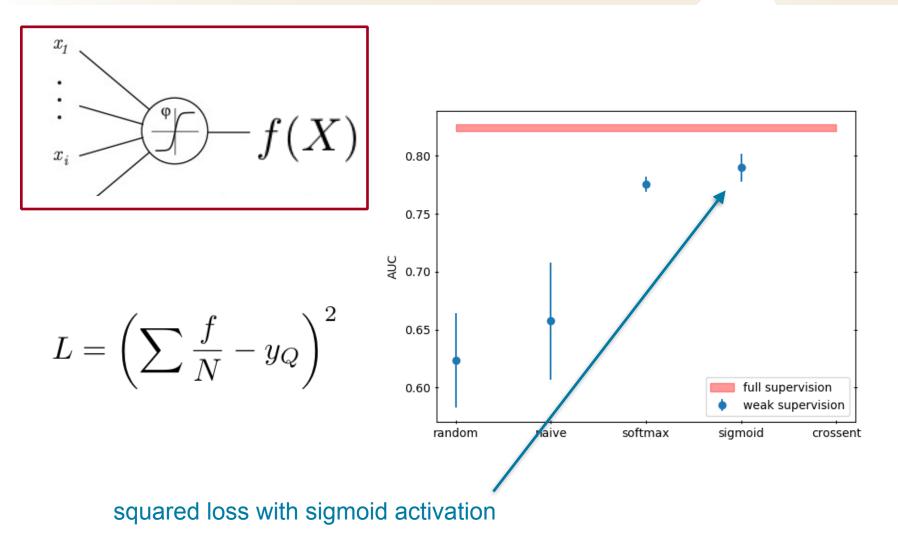
Jet image + weak supervision

-SLAC

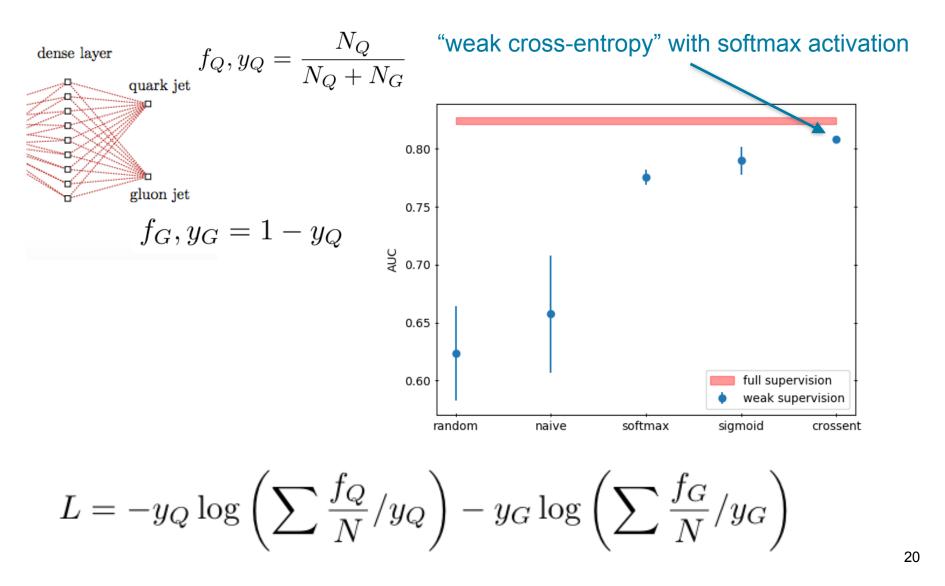


symmetric squared loss with softmax activation

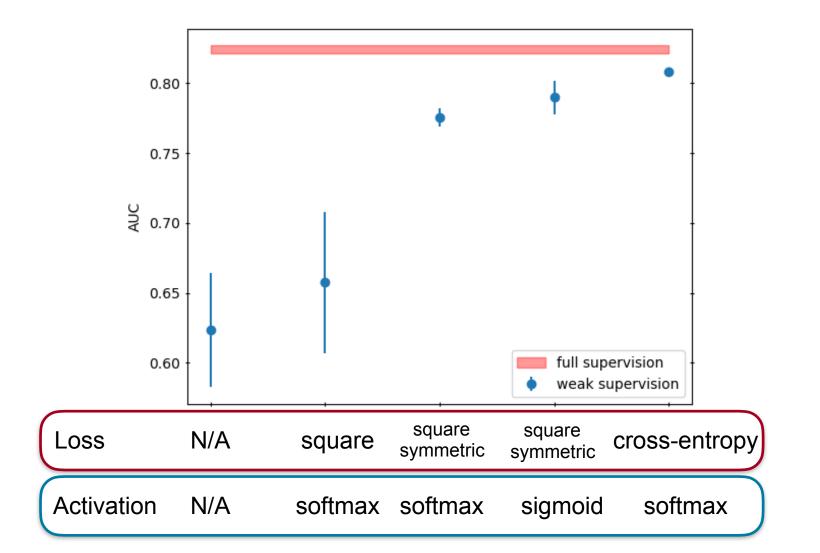
Jet image + weak supervision



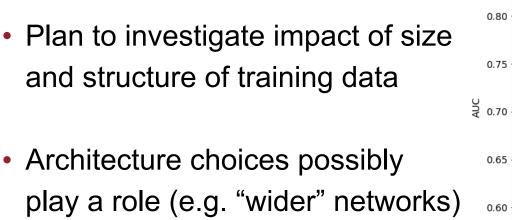
Jet image + weak supervision

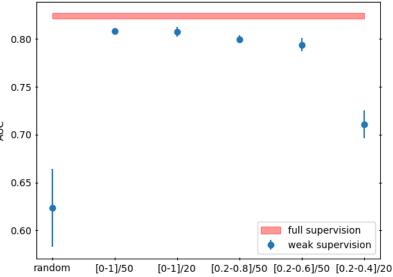


Jet image + weak supervision



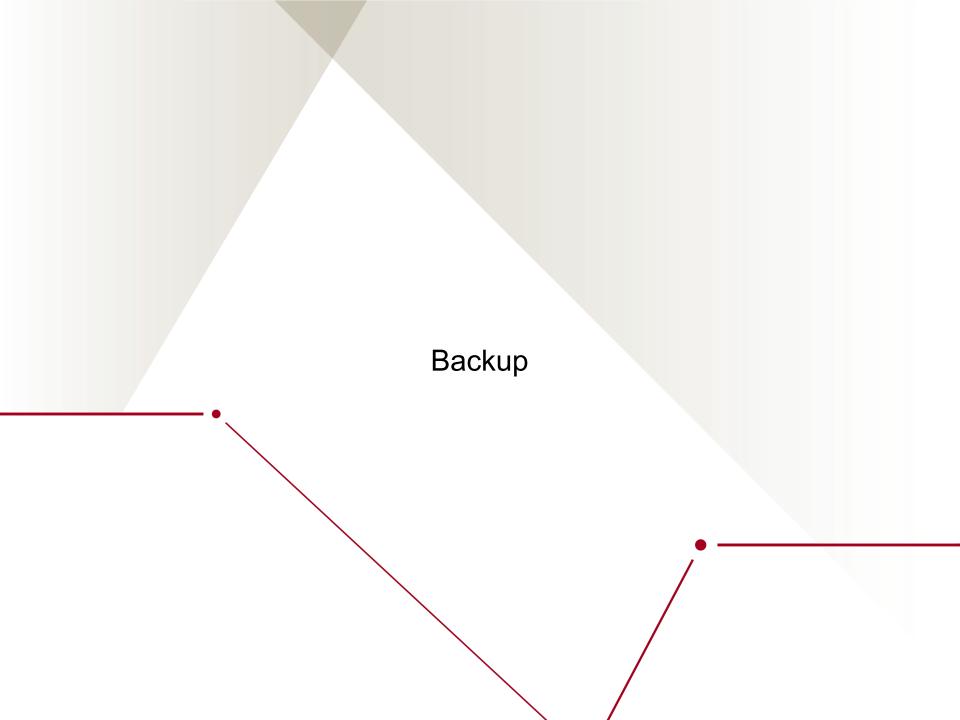
- First implementation of **weak supervision+CNN** shows promising results for jet image classification with **unlabeled training data**.
- Careful choice for activation and loss function provide important handles to close gap wrt full supervision performance.





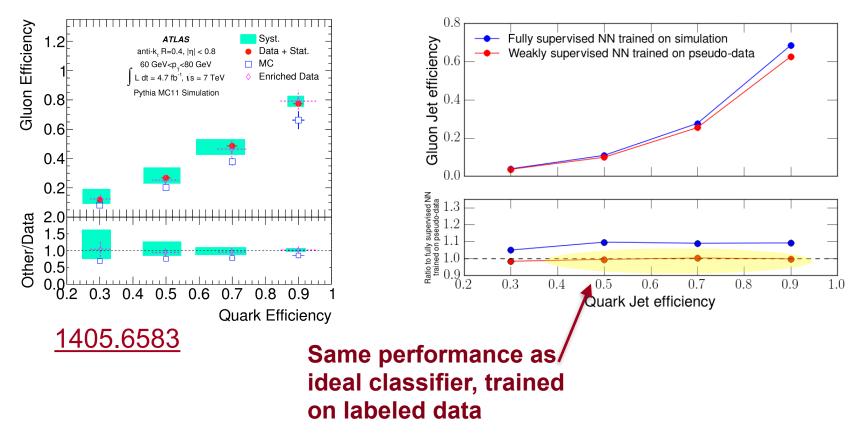
References

- Jet-Images: Computer Vision Inspired Techniques for Jet Tagging - <u>https://arxiv.org/abs/1407.5675</u>
- Jet-Images Deep Learning Edition <u>https://arxiv.org/abs/</u> <u>1511.05190</u>
- Light-quark and gluon jet discrimination in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector <u>https://arxiv.org/abs/</u> <u>1405.6583</u>
- Weakly Supervised Classification in High Energy Physics -<u>https://arxiv.org/abs/1702.00414</u>

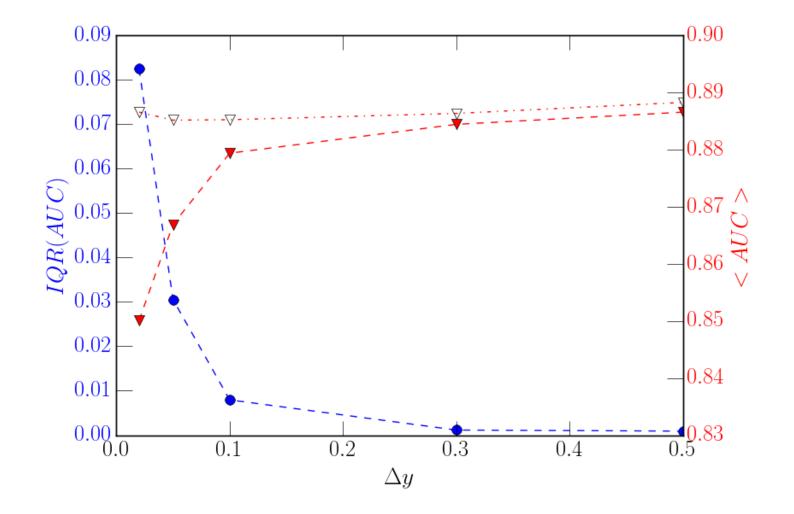


Weak supervision

- Weak supervision allows training directly on data
- Learns only <u>real</u> features, from being exposed to discriminant features in data.

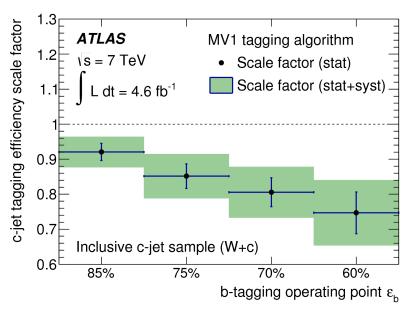


Stability



data-MC SFs

SLAC



2016 JINST 11 P04008

Cumulative data-simulation scale factor - CMS Tagger, CMS Combined Tagger

$ \eta < 1.0$				
Selection	MADGRAPH	POWHEG	MC@NLO	
CMS Tagger WP0	0.985 ± 0.073	1.173 ± 0.092	1.033 ± 0.081	
CMS Combined Tagger WP3	0.891 ± 0.118	1.063 ± 0.146	0.933 ± 0.129	

$1.0 < \eta < 2.4$				
Selection	MADGRAPH	POWHEG	MC@NLO	
CMS Tagger WP0	0.644 ± 0.100	0.704 ± 0.110	0.768 ± 0.118	
CMS Combined Tagger WP3	0.685 ± 0.199	0.906 ± 0.277	0.802 ± 0.230	

CMS-PAS-JME-13-007

Jet image + weak supervision

