
Large-Scale Distributed
Network Training with MPI

Dustin Anderson

Caltech

DS@HEP

11 May 2017

1

 Dustin Anderson — 11 May 2017

 Dustin Anderson — 11 May 2017

Overview
• GPU computation can dramatically

speed up neural network training

• Lightweight ML libraries enable fast
prototyping of NN models

➡ E.g., Keras

• User-friendly support for training with
CPU + a single GPU

2

 Dustin Anderson — 11 May 2017

Overview
• Modern computing resources

provide access to many GPUs
simultaneously

• Physicists often have access to,
e.g., supercomputers with
hundreds of nodes

• Would like to maximally exploit
these

3

 Dustin Anderson — 11 May 2017

Neural Network Training
• NN training paradigm: stochastic gradient

descent (SGD)

• Update rule for model weights

4

Minimize loss function Q(w)

~w ! ~w � ⌘rQ(~w)

• Variants: dynamically adjust learning rate
η or have separate η for each parameter

➡ Adam, RMSProp, Nadam, …

 Dustin Anderson — 11 May 2017

Neural Network Training

• SGD is inherently sequential

• Two alternating steps:

1. Compute gradient of loss

2. Update model weights

• But algorithms exist to parallelize it

5

Minimize loss function Q(w)

 Dustin Anderson — 11 May 2017

Distributed Training
• Paradigm for distributed SGD:

➡ Have N compute nodes

➡ One node acts as “Master”

➡ The others are “Workers”

• Workers can communicate with
Master synchronously (all at once)
or asynchronously

6

M

WWW W W

 Dustin Anderson — 11 May 2017

Downpour SGD
• “Downpour” is a straightforward

algorithm for distributed SGD

• Worker-Master communication is
asynchronous

• Master and Workers each have a
local copy of the NN weights
and some training/validation data

7

M

WWW W W

J. Dean, et al. Large scale distributed
deep networks. NIPS’12

 Dustin Anderson — 11 May 2017

Downpour SGD

8

 Dustin Anderson — 11 May 2017

Stale Gradient Problem

• In a distributed setting, nodes
often compute gradients using
outdated model parameters

• SGD updates using old weights
are suboptimal (“stale”)

• This issue can be mitigated by
suitable choice of SGD
momentum [1]

9

[1] Omnivore: An Optimizer for Multi-device
Deep Learning on CPUs and GPUs
https://arxiv.org/pdf/1606.04487.pdf

Validation accuracy decreases
with larger number of nodes

https://arxiv.org/pdf/1606.04487.pdf

 Dustin Anderson — 11 May 2017

Elastic Averaging SGD
• A different distributed training

algorithm

• Master and Worker model
weights are connected via an
elastic force

• Workers have individual freedom
to explore the parameter space

10
Zhang et al., Deep learning with elastic averaging

SGD. https://arxiv.org/abs/1412.6651

M
W

W

W

W

W

https://arxiv.org/abs/1412.6651

 Dustin Anderson — 11 May 2017

Learning with MPI
• The Message Passing Interface (MPI) is

a widespread standard for parallel
programming

➡ Used e.g. for job submission at
supercomputing sites

• MPI code is portable and agnostic to
underlying hardware

• APIs/Libraries for C++, Python
(mpi4py), and many others

11

 Dustin Anderson — 11 May 2017

MPI-Learn Library
• MPI-Learn is a python library for MPI-based

distributed training of neural networks

https://github.com/duanders/mpi_learn

• Interfaces with Keras

• Goal: provide a lightweight, “plug & play” interface to
multi-GPU training

12

 Dustin Anderson — 11 May 2017

• Basic workflow:

A. Define neural network as a Keras model

B. Define a generator for training data as a Python
generator

C. Define training algorithm and any
hyperparameters

D. Launch distributed training!

13

MPI-Learn Library

 Dustin Anderson — 11 May 2017

• Library features:

➡ Downpour (with choice of gradient update algorithm)
and Elastic Averaging SGD training

➡ Synchronous and asynchronous training

➡ Support for Theano and Tensorflow backends to Keras

➡ Preliminary support for other Master-Worker hierarchies

14

MPI-Learn Library

https://github.com/duanders/mpi_learn

 Dustin Anderson — 11 May 2017

Performance Tests
• Trained a benchmark NN

on up to 8 GPUs

➡ RNN event
classification model
from J-R Vlimant’s talk
on Tuesday

• Training speed-up
roughly linear with # of
GPUs

15

Validation is performed on a single node
→ constant contribution to training time

 Dustin Anderson — 11 May 2017

Performance Tests
• Larger-scale test using

ALCF Cooley cluster

➡ Trained with up to 60
GPUs

• Speed-up is linear up
to ~15 GPUs

• Speed-up is 30X when
running on 60 GPUs

16

 Dustin Anderson — 11 May 2017

Conclusion
• Distributed learning becomes increasingly

important as DNNs become larger and more
widespread

• The MPI-Learn library provides a convenient
interface to multi-GPU training of Keras
models

• Facilitates quicker prototyping and testing of
large deep neural networks

17

