

# Large-Scale Distributed Network Training with MPI



Dustin Anderson Caltech

DS@HEP 11 May 2017





#### Overview

- GPU computation can dramatically speed up neural network training
- Lightweight ML libraries enable fast prototyping of NN models
  - → E.g., Keras
- User-friendly support for training with CPU + a single GPU





#### Overview

- Modern computing resources provide access to many GPUs simultaneously
- Physicists often have access to, e.g., supercomputers with hundreds of nodes
- Would like to maximally exploit these







### Neural Network Training

- NN training paradigm: stochastic gradient descent (SGD)
- Update rule for model weights  $ec{w}$

$$\vec{w} \to \vec{w} - \eta \nabla Q(\vec{w})$$







Minimize loss function Q(w)



### Neural Network Training

- SGD is inherently sequential
- Two alternating steps:
  - 1. Compute gradient of loss
  - 2. Update model weights
- But algorithms exist to parallelize it



Minimize loss function Q(w)



# Distributed Training

- Paradigm for distributed SGD:
  - → Have N compute nodes
  - → One node acts as "Master"
  - → The others are "Workers"
- Workers can communicate with Master synchronously (all at once) or asynchronously





# Downpour SGD

- "Downpour" is a straightforward algorithm for distributed SGD
- Worker-Master communication is asynchronous
- Master and Workers each have a local copy of the NN weights and some training/validation data





# Downpour SGD





#### Stale Gradient Problem

- In a distributed setting, nodes often compute gradients using outdated model parameters
- SGD updates using old weights are suboptimal ("stale")
- This issue can be mitigated by suitable choice of SGD momentum [1]



Validation accuracy decreases with larger number of nodes

[1] Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs <a href="https://arxiv.org/pdf/1606.04487.pdf">https://arxiv.org/pdf/1606.04487.pdf</a>



## Elastic Averaging SGD

- A different distributed training algorithm
- Master and Worker model weights are connected via an elastic force
- Workers have individual freedom to explore the parameter space





# Learning with MPI

- The Message Passing Interface (MPI) is a widespread standard for parallel programming
  - → Used e.g. for job submission at supercomputing sites



 APIs/Libraries for C++, Python (mpi4py), and many others





# MPI-Learn Library

 MPI-Learn is a python library for MPI-based distributed training of neural networks

#### https://github.com/duanders/mpi\_learn

- Interfaces with Keras
- Goal: provide a lightweight, "plug & play" interface to multi-GPU training



# MPI-Learn Library

- Basic workflow:
  - A. Define neural network as a Keras model
  - B. **Define a generator for training data** as a Python generator
  - C. Define training algorithm and any hyperparameters
  - D. Launch distributed training!



# MPI-Learn Library

- Library features:
  - Downpour (with choice of gradient update algorithm) and Elastic Averaging SGD training
  - → Synchronous and asynchronous training
  - → Support for Theano and Tensorflow backends to Keras
  - → Preliminary support for other Master-Worker hierarchies

https://github.com/duanders/mpi\_learn



#### Performance Tests

- Trained a benchmark NN on up to 8 GPUs
  - → RNN event classification model from J-R Vlimant's talk on Tuesday
- Training speed-up roughly linear with # of GPUs



Validation is performed on a single node → constant contribution to training time



#### Performance Tests

- Larger-scale test using
  ALCF Cooley cluster
  - → Trained with up to 60 GPUs
- Speed-up is linear up to ~15 GPUs
- Speed-up is 30X when running on 60 GPUs





#### Conclusion

- Distributed learning becomes increasingly important as DNNs become larger and more widespread
- The MPI-Learn library provides a convenient interface to multi-GPU training of Keras models
- Facilitates quicker prototyping and testing of large deep neural networks