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Overview
• GPU computation can dramatically 

speed up neural network training 

• Lightweight ML libraries enable fast 
prototyping of NN models 

➡ E.g., Keras 

• User-friendly support for training with 
CPU + a single GPU
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Overview
• Modern computing resources 

provide access to many GPUs 
simultaneously 

• Physicists often have access to, 
e.g., supercomputers with 
hundreds of nodes 

• Would like to maximally exploit 
these 
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Neural Network Training
• NN training paradigm: stochastic gradient 

descent (SGD) 

• Update rule for model weights 
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Minimize loss function Q(w)

~w ! ~w � ⌘rQ(~w)

• Variants: dynamically adjust learning rate 
η or have separate η for each parameter 

➡ Adam, RMSProp, Nadam, …
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Neural Network Training

• SGD is inherently sequential 

• Two alternating steps: 

1. Compute gradient of loss  

2. Update model weights 

• But algorithms exist to parallelize it
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Minimize loss function Q(w)
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Distributed Training
• Paradigm for distributed SGD:  

➡ Have N compute nodes 

➡ One node acts as “Master” 

➡ The others are “Workers” 

• Workers can communicate with 
Master synchronously (all at once) 
or asynchronously
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Downpour SGD
• “Downpour” is a straightforward 

algorithm for distributed SGD 

• Worker-Master communication is 
asynchronous 

• Master and Workers each have a 
local copy of the NN weights 
and some training/validation data
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J. Dean, et al. Large scale distributed 
deep networks. NIPS’12
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Downpour SGD
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Stale Gradient Problem

• In a distributed setting, nodes 
often compute gradients using 
outdated model parameters 

• SGD updates using old weights 
are suboptimal (“stale”) 

• This issue can be mitigated by 
suitable choice of SGD 
momentum [1]
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[1] Omnivore: An Optimizer for Multi-device 
Deep Learning on CPUs and GPUs 
https://arxiv.org/pdf/1606.04487.pdf

Validation accuracy decreases
with larger number of nodes

https://arxiv.org/pdf/1606.04487.pdf
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Elastic Averaging SGD
• A different distributed training 

algorithm 

• Master and Worker model 
weights are connected via an 
elastic force 

• Workers have individual freedom 
to explore the parameter space
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Zhang et al., Deep learning with elastic averaging 

SGD. https://arxiv.org/abs/1412.6651
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Learning with MPI
• The Message Passing Interface (MPI) is 

a widespread standard for parallel 
programming 

➡ Used e.g. for job submission at 
supercomputing sites 

• MPI code is portable and agnostic to 
underlying hardware 

• APIs/Libraries for C++, Python 
(mpi4py), and many others
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MPI-Learn Library
• MPI-Learn is a python library for MPI-based 

distributed training of neural networks 

https://github.com/duanders/mpi_learn 

• Interfaces with Keras 

• Goal: provide a lightweight, “plug & play” interface to 
multi-GPU training
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• Basic workflow: 

A. Define neural network as a Keras model 

B. Define a generator for training data as a Python 
generator 

C. Define training algorithm and any 
hyperparameters 

D. Launch distributed training!
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MPI-Learn Library
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• Library features: 

➡ Downpour (with choice of gradient update algorithm) 
and Elastic Averaging SGD training 

➡ Synchronous and asynchronous training 

➡ Support for Theano and Tensorflow backends to Keras 

➡ Preliminary support for other Master-Worker hierarchies
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MPI-Learn Library

https://github.com/duanders/mpi_learn 
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Performance Tests
• Trained a benchmark NN 

on up to 8 GPUs 

➡ RNN event 
classification model 
from J-R Vlimant’s talk 
on Tuesday 

• Training speed-up 
roughly linear with # of 
GPUs
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Validation is performed on a single node 
→ constant contribution to training time
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Performance Tests
• Larger-scale test using 

ALCF Cooley cluster 

➡ Trained with up to 60 
GPUs 

• Speed-up is linear up 
to ~15 GPUs 

• Speed-up is 30X when 
running on 60 GPUs
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Conclusion
• Distributed learning becomes increasingly 

important as DNNs become larger and more 
widespread 

• The MPI-Learn library provides a convenient 
interface to multi-GPU training of Keras 
models 

• Facilitates quicker prototyping and testing of 
large deep neural networks
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