
Deep Reinforcement Learning:
Foundations and Recent Advances

Rocky Duan
OpenAI / UC Berkeley

[Rocky Duan, OpenAI / UC Berkeley]

Recent Breakthroughs in AI

[Mnih et al, 2013] [Silver et al, 2016]

[Levine et al, 2015; Finn et al, 2016] [Google]

[Rocky Duan, OpenAI / UC Berkeley]

Agent

Environment

action
at

rt+1

st+1

reward
rt

state
st

Goal: maximize expected reward

Reinforcement Learning

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Markov Decision Processes (MDPs)

Markov property: the agent’s future is independent of its past history
conditioned on the current state.

[Rocky Duan, OpenAI / UC Berkeley]

Markov Decision Processes (MDPs)

An MDP is defined by:
s 2 S• A set of states
a 2 A• A set of actions

R(s, a, s0)• A reward function
s0• A start state

• Maybe a terminal state

[Image credit: CS188 at Berkeley]

P (s0|s, a)• A transition function

[Rocky Duan, OpenAI / UC Berkeley]

A policy is a mapping
specifying what action to take at each
state.

Policies

⇡ : S ! A

[Image credit: CS188 at Berkeley]

[Rocky Duan, OpenAI / UC Berkeley]

Utility and Discounting

• Utility of a trajectory ⌧ := (s0, a0, r0, s1, a1, r1, . . .)
U(⌧) =

P
t rt• It’s reasonable to maximize the sum of rewards:

• It’s also reasonable to prefer rewards now to rewards later

[Image credit: CS188 at Berkeley]

U(⌧) =
P

t �
trt• One solution: value of rewards decay exponentially

� 2 (0, 1]

[Rocky Duan, OpenAI / UC Berkeley]

V*(s) = expected utility starting in s and acting optimally

Values of States

Bellman Equation:

V ⇤
(s) = max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V ⇤
(s0))

Value Iteration:

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

k = 0

[Image credit: CS188 at Berkeley]

V0(s) 0

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

k = 0

[Image credit: CS188 at Berkeley]

V1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V0(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 1

V1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V0(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 1

V2(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V1(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 2

V2(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V1(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 3

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 4

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 5

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 6

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 7

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 8

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 9

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 10

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 11

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 12

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 100

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))

[Rocky Duan, OpenAI / UC Berkeley]

Q-Values

Q*(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q⇤
(s, a) =

X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Q⇤

(s0, a0))

Q-Value Iteration:

Qk+1(s, a)
X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Qk(s

0, a0))

[Rocky Duan, OpenAI / UC Berkeley]

Q-Value Iteration

Noise = 0.2
Discount = 0.9

k = 100

[Image credit: CS188 at Berkeley]

Qk+1(s, a)
X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Qk(s

0, a0))

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Q-Learning

Q-Learning: Collect samples and learn Q(s, a) values as you go.

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a) + �Vk(s
0
))

Qk+1(s, a)
X

s0

P (s0|s, a)(R(s, a) + �max

a0
Qk(s

0, a0))
Want:

But no access to P (s0|s, a)

• Record sample (s, a, s’, r)
Q(s, a)• Consider your old estimate:

sample = r + �max

a0
Q(s0, a0)• Consider your new sample estimate:

Q(s, a) (1� ↵)Q(s, a) + (↵)[sample]

• Incorporate the new estimate into a running average

[Rocky Duan, OpenAI / UC Berkeley]

Q-Learning

Theorem: Q-Learning converges to the optimal value, as long as you visit

each state-action pair infinitely often.

[Rocky Duan, OpenAI / UC Berkeley]

Problem: For very large state spaces, cannot store Q-values explicitly

DQN

• Receive a sample (s, a, s’, r)

Q✓(s, a)• Consider your old estimate:

sample = r + �max

a0
Q✓(s

0, a0)
• Consider your new sample estimate:

✓ ✓ � ↵r✓ (Q✓(s, a)� sample)2
• Perform gradient descent on squared error

Solution: Use function approximation (e.g. deep neural networks!)

[Image credit: Mnih et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]

[Rocky Duan, OpenAI / UC Berkeley]

DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]

[Rocky Duan, OpenAI / UC Berkeley]

DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]

[Rocky Duan, OpenAI / UC Berkeley]

DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Caveats

• No (known) guarantees of performance improvement when using

function approximation
• Hard to work with continuous actions since we can’t have an output

for every possible action

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Policy Optimization

Objective: max

✓
U(✓) where U(✓) := E⌧ |⇡✓

[U(⌧)] = E⇡✓ [

X

t

�trt]

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

Assume a stochastic policy ⇡✓ : S ⇥A ! [0, 1]

[Image credit: Schulman et al, 2015]

Control vector…

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

r✓U(✓) ⇡ 1

N

NX

i=1

TX

t=0

r✓ log ⇡✓(a
i
t|sit)

TX

t0=t

�t0rit0

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

Improving efficiency using baselines:

: average performance starting in state s and following policy V ⇡✓ (s) ⇡✓

r✓U(✓) ⇡ 1

N

NX

i=1

TX

t=0

r✓ log ⇡✓(a
i
t|sit)

TX

t0=t

�t0rit0 � V ⇡✓
(sit)

!

[Rocky Duan, OpenAI / UC Berkeley]

Choosing step size

Given the gradient, how to choose a step size?
• Supervised learning

• Step too large: next update will correct for it
• Reinforcement Learning

• Step too large: terrible policy
• Next mini batch will be collected under this

terrible policy!
• Unclear how to recover

[Rocky Duan, OpenAI / UC Berkeley]

Trust Region Methods

Formulate as constrained optimization problem, controlling how much the

policy can change.

Gives rise to natural policy gradient and TRPO

[Kakade 2002; Bagnell & Schneider 2003; Peters & Schaal 2003; Schulman et

al 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Trust Region Methods: Success Stories

[Schulman et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Trust Region Methods: Success Stories

[Schulman et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Trust Region Methods: Success Stories

[Schulman et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Policy Optimization

Objective: max

✓
U(✓) where U(✓) := E⌧ |⇡✓

[U(⌧)] = E⇡✓ [

X

t

�trt]

Black-Box Optimization?

[Rocky Duan, OpenAI / UC Berkeley]

Cross-Entropy Method
Start with initial parameter distribution, sayPµ(1)(✓) N (0, I)

✓(e) ⇠ Pµ(i)(✓)

for iter i = 1, 2, …

for population member e = 1, 2, …

Sample

⇡✓(e) : ⌧1, . . . , ⌧NCollect trajectories under

Û(✓(e)) := 1
N

PN
j=1 U(⌧j)(✓(e), Û(✓(e)))Store where

µ(i+1) argmaxµ

P
ē logPµ(✓ē)

end for

where ē indexes over top p% performance

end for

[Rocky Duan, OpenAI / UC Berkeley]

Evolution Strategies: Success Stories

[Salimans et al, 2017]

[Rocky Duan, OpenAI / UC Berkeley]

vs. Evolution StrategiesPolicy Gradient

More sample efficient ☺ Less sample efficient ☹

Trickier to parallelize ☹ Easier to parallelize ☺

Requires
differentiable policies ☹

Can work with non-
differentiable policies ☺

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Guided Policy Search

Key idea:
• During training, allow robot to try from the exact same starting

state several times
• For such consistent scenarios, iLQR from optimal control theory

can be leveraged to help find a solution
• Train a neural network to match the iLQR controllers which

generalizes to new situations

[Rocky Duan, OpenAI / UC Berkeley]

Guided Policy Search: Learning on Real Robot

[Levine et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Guided Policy Search: Success Stories

[Levine et al, 2015]

[Rocky Duan, OpenAI / UC Berkeley]

Outline
• Basics of Reinforcement Learning

• Model-Free RL

• Value-Based Methods

• Policy-Based Methods

• Model-Based RL

• Guided Policy Search

• AlphaGo

[Rocky Duan, OpenAI / UC Berkeley]

Background: Monte-Carlo Tree Search

Partial game tree for tic-tac-toe
[Image credit: Wikimedia]

Number of states: less than 105

[Rocky Duan, OpenAI / UC Berkeley]

Small snapshot of game tree for Go
[Image credit: Deepmind]

Background: Monte-Carlo Tree Search

Number of states: more than 10170!

[Rocky Duan, OpenAI / UC Berkeley]

AlphaGo

Reducing breadth Reducing depth

[Image credit: Silver et al, 2016]

[Rocky Duan, OpenAI / UC Berkeley]

AlphaGo

Learning the policy & value functions
• Supervised pre-training
• Self-play

[Image credit: Silver et al, 2016]

[Rocky Duan, OpenAI / UC Berkeley]

AlphaGo: Success Stories

[Silver et al, 2016]

[Rocky Duan, OpenAI / UC Berkeley]

AlphaGo: Success Stories

[Silver et al, 2016]

[Rocky Duan, OpenAI / UC Berkeley]

Want to Learn More?

CS188
Artificial Intelligence

bit.ly/fnal-cs188

CS294-112
Deep Reinforcement Learning

bit.ly/fnal-cs294

rllab
Reinforcement Learning Toolkit

bit.ly/fnal-rllab

http://bit.ly/fnal-cs188
http://bit.ly/fnal-cs294
http://bit.ly/fnal-rllab

[Rocky Duan, OpenAI / UC Berkeley]

Potential Applications

Autonomous Flight Algorithmic Trading

Smart Grid Protein Folding Experiment Design

Virtual Assistant

[Rocky Duan, OpenAI / UC Berkeley]

Thank you!

[Rocky Duan, OpenAI / UC Berkeley]

[Back-up Slides]

[Rocky Duan, OpenAI / UC Berkeley]

Target Network

Problem: constantly regressing against moving target since θ is used in

computing sample estimates (and error accumulates).

Solution: use a snapshot of the parameter value to compute sample

estimates, which is updated occasionally (once per ~104 updates)✓target

✓ ✓ � ↵r✓ (Q✓(s, a)� sample)2
sample = r + �max

a0
Q✓(s

0, a0)

✓ ✓ � ↵r✓ (Q✓(s, a)� sample)2
sample = r + �max

a0
Q✓target(s

0, a0)

[Rocky Duan, OpenAI / UC Berkeley]

Trust Region Methods

Trust Region Policy Optimization [Schulman 2015]
• Efficient scheme through conjugate gradient;
• Replace objective with surrogate loss, which is a

better approximation yet equally efficient to evaluate.

Problem: For high-dimensional building is impractical!✓ F✓

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

Assumes a stochastic policy ⇡✓ : S ⇥A ! [0, 1]

U(✓) = E⌧ |⇡✓
[U(⌧)]

=

Z
P✓(⌧)U(⌧)d⌧

where

P✓(⌧) = P (s0)
Y

t

⇡✓(at|st)P (st+1|st, at)

U(✓) = E⌧ |⇡✓
[U(⌧)]

=

Z
P✓(⌧)U(⌧)d⌧

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P✓(⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P✓(⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

⇡ 1

N

NX

i=1

r✓ logP✓(⌧i)U(⌧i)

[Rocky Duan, OpenAI / UC Berkeley]

Policy Gradient

No need to differentiate through dynamics!

Recall

P✓(⌧) = P (s0)
Y

t

⇡✓(at|st)P (st+1|st, at)

Hence r✓ logP✓(⌧) = r✓ logP (s0) +
X

t

(r✓ log ⇡✓(at|st) +r✓ logP (st+1|st, at))

=

X

t

r✓ log ⇡✓(at|st)

[Rocky Duan, OpenAI / UC Berkeley]

Our Current / Future Directions
• Faster learning

• Exploration [Stadie et al, 2015; Houthooft et al,

2016; Tang et al, 2016]

• Meta-learning: RL2 [Duan et al, 2016]; One-shot

Imitation Learning [Duan et al, 2017]; MAML [Finn

et al, 2017]

• Transfer learning

• Modular networks [Devin et al, 2017]; Invariant

feature spaces [Gupta et al, 2017]

• Domain randomization [Tobin et al, 2017]

• Safe learning

• [Kahn et al, 2017; Held et al, 2016]

• Unsupervised / Semi-supervised learning

• InfoGAN [Chen et al, 2016]; VLAE [Chen et al,

2017]; Temporal segment models [Mishra et al]

• Grounded language / Multi-agent

• “Inventing” language [Mordatch & Abbeel, 2017]

• Imitation

• Generative Adversarial Imitation Learning [Ho et

al, 2016]; Guided Cost Learning [Finn et al, 2016];

Third-person [Stadie et al, 2017]

• Value alignment / AI safety

• CIRL [Hadfield-Menell et al, 2016]; Off-switch

[Hadfield-Menell et al, 2016]

• Communication [Huang et al, 2017]

