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Recent Breakthroughs in AI

[Mnih et al, 2013] [Silver et al, 2016]

[Levine et al, 2015; Finn et al, 2016] [Google]
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Goal: maximize expected reward

Reinforcement Learning
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Markov Decision Processes (MDPs)

Markov property: the agent’s future is independent of its past history 
conditioned on the current state.
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Markov Decision Processes (MDPs)

An MDP is defined by:
s 2 S• A set of states
a 2 A• A set of actions

R(s, a, s0)• A reward function
s0• A start state

• Maybe a terminal state

[Image credit: CS188 at Berkeley]

P (s0|s, a)• A transition function
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A policy is a mapping
specifying what action to take at each 
state.

Policies

⇡ : S ! A

[Image credit: CS188 at Berkeley]
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Utility and Discounting

• Utility of a trajectory ⌧ := (s0, a0, r0, s1, a1, r1, . . .)
U(⌧) =

P
t rt• It’s reasonable to maximize the sum of rewards: 

• It’s also reasonable to prefer rewards now to rewards later

[Image credit: CS188 at Berkeley]

U(⌧) =
P

t �
trt• One solution: value of rewards decay exponentially

� 2 (0, 1]
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V*(s) = expected utility starting in s and acting optimally

Values of States

Bellman Equation:

V ⇤
(s) = max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V ⇤
(s0))

Value Iteration:

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

k = 0

[Image credit: CS188 at Berkeley]

V0(s) 0
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Value Iteration

Noise = 0.2
Discount = 0.9

k = 0

[Image credit: CS188 at Berkeley]

V1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V0(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 1

V1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V0(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 1

V2(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V1(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 2

V2(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �V1(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 3

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 4

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 5

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 6

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 7

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 8

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 9

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 10

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 11

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 12

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Value Iteration

Noise = 0.2
Discount = 0.9

[Image credit: CS188 at Berkeley]

k = 100

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a, s0) + �Vk(s
0
))
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Q-Values

Q*(s, a) = expected utility starting in s, taking action a, and (thereafter) 
acting optimally

Bellman Equation:

Q⇤
(s, a) =

X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Q⇤

(s0, a0))

Q-Value Iteration:

Qk+1(s, a) 
X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Qk(s

0, a0))
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Q-Value Iteration

Noise = 0.2
Discount = 0.9

k = 100

[Image credit: CS188 at Berkeley]

Qk+1(s, a) 
X

s0

P (s0|s, a)(R(s, a, s0) + �max

a0
Qk(s

0, a0))
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Q-Learning

Q-Learning: Collect samples and learn Q(s, a) values as you go.

Vk+1(s) max

a

X

s0

P (s0|s, a)(R(s, a) + �Vk(s
0
))

Qk+1(s, a) 
X

s0

P (s0|s, a)(R(s, a) + �max

a0
Qk(s

0, a0))
Want:

But no access to P (s0|s, a)

• Record sample (s, a, s’, r)
Q(s, a)• Consider your old estimate:

sample = r + �max

a0
Q(s0, a0)• Consider your new sample estimate: 

Q(s, a) (1� ↵)Q(s, a) + (↵)[sample]

• Incorporate the new estimate into a running average
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Q-Learning

Theorem: Q-Learning converges to the optimal value, as long as you visit 

each state-action pair infinitely often.
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Problem: For very large state spaces, cannot store Q-values explicitly

DQN

• Receive a sample (s, a, s’, r)

Q✓(s, a)• Consider your old estimate:

sample = r + �max

a0
Q✓(s

0, a0)
• Consider your new sample estimate: 

✓  ✓ � ↵r✓ (Q✓(s, a)� sample)2
• Perform gradient descent on squared error

Solution: Use function approximation (e.g. deep neural networks!)

[Image credit: Mnih et al, 2015]
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DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]
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DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]
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DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]
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DQN: Success Stories

[Mnih et al, NIPS 2013 / Nature 2015]
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Caveats

• No (known) guarantees of performance improvement when using 

function approximation
• Hard to work with continuous actions since we can’t have an output 

for every possible action
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Policy Optimization

Objective:  max

✓
U(✓) where U(✓) := E⌧ |⇡✓

[U(⌧)] = E⇡✓ [

X

t

�trt]
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Policy Gradient

Assume a stochastic policy ⇡✓ : S ⇥A ! [0, 1]

[Image credit: Schulman et al, 2015]

Control vector…
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Policy Gradient

r✓U(✓) ⇡ 1

N

NX

i=1

TX

t=0

r✓ log ⇡✓(a
i
t|sit)

TX

t0=t

�t0rit0
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Policy Gradient

Improving efficiency using baselines:

: average performance starting in state s and following policy V ⇡✓ (s) ⇡✓

r✓U(✓) ⇡ 1

N

NX

i=1

TX

t=0

r✓ log ⇡✓(a
i
t|sit)

 
TX

t0=t

�t0rit0 � V ⇡✓
(sit)

!
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Choosing step size

Given the gradient, how to choose a step size?
• Supervised learning

• Step too large: next update will correct for it
• Reinforcement Learning

• Step too large: terrible policy
• Next mini batch will be collected under this 

terrible policy!
• Unclear how to recover
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Trust Region Methods

Formulate as constrained optimization problem, controlling how much the 

policy can change.

Gives rise to natural policy gradient and TRPO

[Kakade 2002; Bagnell & Schneider 2003; Peters & Schaal 2003; Schulman et 

al 2015]
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Trust Region Methods: Success Stories

[Schulman et al, 2015]
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Trust Region Methods: Success Stories

[Schulman et al, 2015]
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Trust Region Methods: Success Stories

[Schulman et al, 2015]
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Policy Optimization

Objective:  max

✓
U(✓) where U(✓) := E⌧ |⇡✓

[U(⌧)] = E⇡✓ [

X

t

�trt]

Black-Box Optimization?
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Cross-Entropy Method
Start with initial parameter distribution,                   sayPµ(1)(✓) N (0, I)

✓(e) ⇠ Pµ(i)(✓)

for iter i = 1, 2, …

for population member e = 1, 2, …

Sample 

⇡✓(e) : ⌧1, . . . , ⌧NCollect trajectories under 

Û(✓(e)) := 1
N

PN
j=1 U(⌧j)(✓(e), Û(✓(e)))Store                             where 

µ(i+1)  argmaxµ

P
ē logPµ(✓ē)

end for

where ē indexes over top p% performance

end for
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Evolution Strategies: Success Stories

[Salimans et al, 2017]
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vs. Evolution StrategiesPolicy Gradient

More sample efficient ☺ Less sample efficient ☹

Trickier to parallelize ☹ Easier to parallelize ☺

Requires
differentiable policies ☹

Can work with non- 
differentiable policies ☺
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Guided Policy Search

Key idea:
• During training, allow robot to try from the exact same starting 

state several times
• For such consistent scenarios, iLQR from optimal control theory 

can be leveraged to help find a solution
• Train a neural network to match the iLQR controllers which 

generalizes to new situations
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Guided Policy Search: Learning on Real Robot

[Levine et al, 2015]
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Guided Policy Search: Success Stories

[Levine et al, 2015]
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Background: Monte-Carlo Tree Search

Partial game tree for tic-tac-toe
[Image credit: Wikimedia]

Number of states: less than 105
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Small snapshot of game tree for Go
[Image credit: Deepmind]

Background: Monte-Carlo Tree Search

Number of states: more than 10170!
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AlphaGo

Reducing breadth Reducing depth

[Image credit: Silver et al, 2016]
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AlphaGo

Learning the policy & value functions
• Supervised pre-training
• Self-play

[Image credit: Silver et al, 2016]
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AlphaGo: Success Stories

[Silver et al, 2016]
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AlphaGo: Success Stories

[Silver et al, 2016]
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Want to Learn More?

CS188
Artificial Intelligence

bit.ly/fnal-cs188

CS294-112
Deep Reinforcement Learning

bit.ly/fnal-cs294

rllab
Reinforcement Learning Toolkit

bit.ly/fnal-rllab

http://bit.ly/fnal-cs188
http://bit.ly/fnal-cs294
http://bit.ly/fnal-rllab
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Potential Applications

Autonomous Flight Algorithmic Trading

Smart Grid Protein Folding Experiment Design

Virtual Assistant
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Thank you!
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[Back-up Slides]
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Target Network

Problem: constantly regressing against moving target since θ is used in 

computing sample estimates (and error accumulates).

Solution: use a snapshot of the parameter value to compute sample 

estimates,              which is updated occasionally (once per ~104 updates)✓target

✓  ✓ � ↵r✓ (Q✓(s, a)� sample)2
sample = r + �max

a0
Q✓(s

0, a0)

✓  ✓ � ↵r✓ (Q✓(s, a)� sample)2
sample = r + �max

a0
Q✓target(s

0, a0)
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Trust Region Methods

Trust Region Policy Optimization [Schulman 2015]
• Efficient scheme through conjugate gradient;
• Replace objective with surrogate loss, which is a 

better approximation yet equally efficient to evaluate.

Problem: For high-dimensional     building       is impractical!✓ F✓
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Policy Gradient

Assumes a stochastic policy ⇡✓ : S ⇥A ! [0, 1]

U(✓) = E⌧ |⇡✓
[U(⌧)]

=

Z
P✓(⌧)U(⌧)d⌧

where

P✓(⌧) = P (s0)
Y

t

⇡✓(at|st)P (st+1|st, at)

U(✓) = E⌧ |⇡✓
[U(⌧)]

=

Z
P✓(⌧)U(⌧)d⌧
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Policy Gradient

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P (⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P✓(⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

r✓U(✓) = r✓

Z
P✓(⌧)U(⌧)d⌧

=

Z
r✓P✓(⌧)U(⌧)d⌧

=

Z
P✓(⌧)

r✓P✓(⌧)

P✓(⌧)
U(⌧)d⌧

=

Z
P✓(⌧)r✓ logP✓(⌧)U(⌧)d⌧

= E⌧ |⇡✓
[r✓ logP✓(⌧)U(⌧)]

⇡ 1

N

NX

i=1

r✓ logP✓(⌧i)U(⌧i)
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Policy Gradient

No need to differentiate through dynamics!

Recall

P✓(⌧) = P (s0)
Y

t

⇡✓(at|st)P (st+1|st, at)

Hence r✓ logP✓(⌧) = r✓ logP (s0) +
X

t

(r✓ log ⇡✓(at|st) +r✓ logP (st+1|st, at))

=

X

t

r✓ log ⇡✓(at|st)
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Our Current / Future Directions
• Faster learning

• Exploration [Stadie et al, 2015; Houthooft et al, 

2016; Tang et al, 2016]

• Meta-learning: RL2 [Duan et al, 2016]; One-shot 

Imitation Learning [Duan et al, 2017]; MAML [Finn 

et al, 2017]

• Transfer learning

• Modular networks [Devin et al, 2017]; Invariant 

feature spaces [Gupta et al, 2017]

• Domain randomization [Tobin et al, 2017]

• Safe learning

• [Kahn et al, 2017; Held et al, 2016]

• Unsupervised / Semi-supervised learning

• InfoGAN [Chen et al, 2016]; VLAE [Chen et al, 

2017]; Temporal segment models [Mishra et al]

• Grounded language / Multi-agent

• “Inventing” language [Mordatch & Abbeel, 2017]

• Imitation

• Generative Adversarial Imitation Learning [Ho et 

al, 2016]; Guided Cost Learning [Finn et al, 2016];  

Third-person [Stadie et al, 2017]

• Value alignment / AI safety

• CIRL [Hadfield-Menell et al, 2016]; Off-switch 

[Hadfield-Menell et al, 2016]

• Communication [Huang et al, 2017]


