Necessary Changes in the Philosophy and Practice of Probability & Statistics

William M. Briggs

Statistician to the Stars!

matt@wmbriggs.com

What is probability?

All men are mortal

Socrates is man

Socrates is mortal

Just half of Martians are mortal

Socrates is Martian

Socrates is mortal

Pr(A) does not exist!

Pr(A|evidence) might exist

A does not "have" a distribution

Distributions do not exist

If Pr(A) = limiting relative frequency, then no probability can ever be known.

If Pr(A|evidence) is subjective, then

$$\Pr(x = 7 | x + y = 12) = 1$$

if I say so.

Interocitors can take states s_1, \ldots, s_p

This is an interocitor

This interocitor is in state s_j

 $Pr(s_j|Interocitors can...) = 1/p :: No sym$ metry! Jack said he saw a whole bunch of guys

There were 12 guys

Pr(12|Jack said...) = not too unlikely.

Cause :: form + material + mechanism + direction :: essence + power

Pr(Y|cause or determine) = 1

$$y = \tan(\theta) \cdot x - g(2v_0^2 \cos^2 \theta)^{-1} \cdot x^2$$

 $\Pr(y|xgv_{o}\theta) \in \{0,1\}$

Chance or randomness are not ontic, thus powerless. *No probability model is causal* (including QM). Every potential must be made actual by something actual (including QM).

We have Pr(Y|X), where X is that information we think or assume is probative of Y meaning we think X is related to the causal path of Y. If not, *pain*. Hypothesis testing? We cannot derive from Pr(Y|X) = p that Y. *Probability is not decision*!

P-value = Pr(larger ad hoc stat $|M_{\Theta}, x, \theta_s =$ 0), which is <u>no way</u> related to Pr($\theta_s = 0 | x, M_{\Theta}$).

Pr(larger ad hoc stat $|M_{\Theta}, x, \theta_s \neq 0$) may be lower!

Bayes is not important: probabaility is.

A parameterized model M relates X to Y probabilistically, e.g. $\mu = \beta_0 + \beta_1 x$ where μ is central parameter of normal used to characterize uncertainty in some y. "Priors" a real distraction: start finite!

With rare exceptions, parameters are of no interest to man nor beast.

 $\hat{\mathbf{Y}} = f(\mathbf{X}, \hat{\theta}(\mathbf{M}_{\theta}))$ ignores uncertainty, and makes a decision.

 $\Pr(\theta|\text{data}, M_{\theta})$ only about unobservable parameters.

We want this:

Pr(Y|new X, data, M), where the data are old values of Y and X, and M are the arguments that led to a (parameterized) model; the parameters having been integrated out.

This—and only this—captures the *full* uncertainty, given M. *Prediction!* *Every* model—neural net, statistical, machine learning, artificial intelligence, anything—can fit into the Pr(Y|XDM) schema. What differentiates them is usually a matter of *ad hoc* complexity and form—and a building in of decision. Demystifying ''learning''

ANNs, GANs, Deep this-and-thats, etc. = parameterized non-linear regressions

Learning = estimating parameters

Extracting features = f(input data)

There is no such thing as *unsupervised learning*.

Every algorithm does *exactly what it is designed to do*, and therefore gives *correct* results conditional on the algorithm.

Not all probability is quantitative, and not all algorithms live in machines.

Monte Carlo — The place to lose your money, and your way.

Jaynes: "It appears to be a quite general principle that, whenever there is a randomized way of doing something, then there is a nonrandomized way that delivers better performance but requires more thought."

Disadvantage of DNN approach: choosing network architecture is a bit of voodoo This seems to work though

Kasieczka

Image D with possible signal + background

$$\Pr(d_{ij}|M_B) \sim \operatorname{Poisson}(\lambda_B)$$

$$\Pr(d_{ij}|M_{S+B}) \sim Poisson(\lambda_S + \lambda_B)$$

$$\Pr(d_{ij}|M_{S+B}, M_B) = p \Pr(\lambda_B) + (1-p) \Pr(\lambda_S + \lambda_B)$$

 $\Pr(M_{S+B}|d_{ij})$ Guglielmetti et al., 2002, Mon. Not. R. Astron. Soc

Fig. 1. Schematic of a decision tree. S for signal, B for background. Terminal nodes (called leaves) are shown in boxes. If signal events are dominant in one leaf, then this leaf is signal leaf; otherwise, background leaf.

Roe et al.

Skill:

Obs <u>S</u>B Mod S 3 5 B 5 87

Super machine neural deep-learning boosting forest machine boasts 90% accuracy!

Skill and calibration curves, not ROC.

Model-based vs. verification-based uncertainty; verify 'features'.

All uncertainty carried through to the bitter end.

In the absence of knowledge of cause, all probabilistic models will classify imperfectly.

William Briggs Uncertainty The Soul of Modeling, Probability & Statistics

"This is not not a statistics text, it is not a treatise on philosophy of science or logic. This work is like nothing I have seen before, an excellent combination of the above, indeed the 'the soul of modeling, probability ...', presented with passion and accessible to everybody."

"It is a deep philosophical treatment of probability written in a plain language and without the interference of unnecessary math."