Computer Vision

Pietro Perona
California Institute of Technology

DS@HEP 2017
Fermilab - 8 May 2017

Scene understanding

Scene understanding

1. On the Italian Alps. Foggy but not too cold. Light breeze. Boy in danger of falling. Parent must be nearby.

Why study vision?

Many applications

Understanding the brain

Vision as an inverse problem

geometry of image formation

[A. Dürer I525]

photometry of image formation

Bidirectional reflectance distribution function (BRDF)

Many worlds, one image

VISION

A more modest proposal...

What is in an image?

The challenge

The challenge

"Eye"
"Eye"

‘Еye"

Learning-based approach

Carcinoma: 135 images

Melanoma: 130 images

Melanoma: 111 dermoscopy images

Melanoma: 130 images

Mela

Melanocytic lesions (dermoscopy)

[Google inception architecture 2015]

> - Convolution
> - AvgPool
> - MaxPool
> $=$ Concat
> - Dropout
> - Fully connected
> - Softmax

Acral-lentiginous melanoma Amelanotic melanoma
Lentigo melanoma

Blue nevus
Halo nevus
Mongolian spot
...
[Esteva et al. 2017]

Depth of

 thinking

Practical results

Deep networks

Visual system

Spatial Stimulus

Stimulus

Spatial Stimulus

pattern recognition

Stimulus

[Fukushima 1980]

[Fukushima 1980]

LeNet + backpropagation (1988)

Fig. 2. Architecture of TeNet-5, a Convolutional Neural Network, here for digits recognition. Fach plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

	0	1	2	3	1	5	6	7	8	9	10	11	12	13	14	15
0	X				X	X	X			X	X	X	X		X	X
1	X	X				X	X	X			X	X	X	X		X
2	X	X	X				X	X	X			X		X	X	X
3		X	X	X			X	X	X	X			X		X	X
1			X	X	X			X	X	X	X		X	X		X
5				X	X	X			X	X	X	X		X	X	X

'TABLE' I
Each column imdicates which featire map in S2 arre combined by the innits in a particmat frature map of CB.

Backpropagation

Backpropagation

AlexNet 2012

[Krizhevsky 2012]

mite
container ship
motor scooter
leopard

grille

	con	agaric
\square	grille	mushroom
	pickup	jelly fungus
	beach wagon	gill fungus
	fire engine	dead-man's-fingers

[Zeiler \& Fergus 2014]

Theret楼相 筑

S	30	$\%$	）						－	2	20
88	\star	x	6	2					\％	－	，
\％	200	1id	\％	，	，				α	ce	， 6
	48	1	－	in	22				FH4	Nas	
	1		H	（6）$=$		¿			（1）	ivin	，
	3｜ a 3	5	3）$=$		（）				\％	400	cove
\％	68					8	do			1	
									\％	\checkmark	रु
La	yer 3								\％	\％	

Catalyst: ImageNet 1000

$\sim 1 \mathrm{~K}$ images for 1 K categories $=\sim 1 \mathrm{M}$ images
[Deng et al 2010]

IMrGENET

Large annotated datasets

Number of categories vs. number of instances

Deep networks
1980-1990

Neuroscience
1960-1990

Large annotated datasets 2004-2010

Google,
Flickr, AMT 2003-2008

Moore's law, GPUs 1960-2015

success stories

 birds

Hooded Merganser

Small duck; feeds by diving to catch mainly fish with thin, serrated bill. Breeding males have showy black and white crest, a coupl...

4	This Is My Bird!	Details...

Bufflehead

[van Horn et al 2014,2016] birds

Hooded Merganser

Small duck; feeds by diving to catch mainly fish with thin, serrated bill. Breeding males have showy black and white crest, a coupl...

4	This Is My Bird!	Details...

Bufflehead

App store: "Merlin Bird ID"
[van Horn et al 2014,2016]

- SPARROWS are small brown-bodied birds with streaked backs and short consal beaks. Their food, mostly seeds except during the nesting season, is obtained on or near the ground. When nol nesting, most are see
ber
tior are sho Sparrows these may jdentificaes temales peries are presented
 towhees, and the Olive Sparoww are omitted. Immatures of some species are much duller, especially those species with black or rutuus on the head. Songs and chups of sparrow's are often more easily distingutished than ate their plumages. See pp. 328-345 for further details.

STREAKED BREASTS

UNSTREAKED BREASTS

White-rtowned

 p. 310$$
\text { p. } 340
$$

Golden cruwned F. 310

Ilarisis

suserican Tree 7. 333
 Ihold
p. 378

Swarup ㅁ. 342

Clay whlored

 p. 3.8rrasshopper p. 328

Rufous-cruaned Firewer's
p. 338
(brown rung)

Lark
F. 232

Rufous-winged
p. 336°
white tail fnngel

Cajsin's
Barlamau's
p. Sinn

Invariance to pose and background

Los Angeles $=1 \mathrm{M}$ trees

Refine by Common Name: All

Search Address: Enter a location

Notes: 34.02203986711136,-118.41489315032959

Discovery: FlyBowl

tSNE dimensionality reduction

- female
O male
right wing extensionleft wing extension
h_{i}^{l} : hidden states of unsupervised model

Simulation: FlyBowl

Simulation: FlyBowl

Simulation: FlyBowl

Challenges

long tails ($\mathrm{N}->0$)

SVM \& NN Performance

Err. decreases by 2.4x when training set increases by 10x

Levels of understanding

- Memorizaton / recall
- Generalization / prediction
- Mechanisms / intervention

Correlation vs causation

$$
\overbrace{}^{\mathrm{X} \text { in bed }} \xrightarrow{Y} P(Y=1 \mid X)=\left\{\begin{array}{lll}
0.03 & \text { if } & X=0 \\
0.95 & \text { if } & X=1
\end{array}\right.
$$

Causation

Causation

Correlation

Definition of causation

Prediction vs intervention

$\{x, y\} \rightarrow$

learning

$$
\downarrow \frac{d y}{d x}
$$

manipulator

bird no person one

Levels of understanding

- Memorizaton / recall
- Generalization / prediction
- Mechanisms / intervention

theory-driven design

Questions: Basic modules Architecture
Optimization

$$
\mathrm{N}->0
$$

Structure of data Performance bounds

Questions: Basic modules Architecture
Optimization

$$
N->0
$$

Better understanding needed

Structure of data Performance bounds

Conclusions

- Computer vision
- Learning-based approach
- Deep networks
- Practical results
- Open problems: $\mathrm{N}->0$, causality, design
- Need theory

