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Introduction

Purpose of calorimetry is to measure the energy of incoming particles
Calorimeters typically constructed from dense material → incoming
particles interact and initiate a shower of successively lower energy
particles, with ∼ all of the incoming energy ultimately deposited in the
calorimeter material through further interactions
In “active” material, the deposited energy can be measured by e.g.
electronic or optical means

Calorimeters may contain different arrangements of “active” and

“passive” material, may be segmented longitudinally (1D), transversely

(2D) or both (3D)
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Introduction

Some general considerations for a transversely segmented

calorimeter:

Number and geometry of cells to include in energy sums

Local containment: Loss of energy outside of included cells or in

gaps/cracks

For a longitudinally segmented calorimeter: additional degree of freedom:
Optimal weighting of layers

In a hadronic environment: Contamination of showers by additional
activity (hadrons or photons from neutral meson decays)

In case of significant upstream material and/or magnetic field: Global
containment: Loss of energy to interactions with material, low
momentum charged particles or bremsstrahlung at wide angles
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Introduction

For ultimate energy resolution need to take care of two related

questions:

How to optimally combine information from different channels
How to optimally correct the energy for known
losses/overmeasurement/nonlinearity

In a machine learning context, this is a prototypical regression

problem

One is often also interested in the type of incoming particle (single γ vs

π0 → γγ vs e± vs π±

Discriminating power is contained in the spatial distribution of
the showers
Typical binary or multi-classification problem

Will start with some examples using the (current) CMS Electromagnetic
calorimeter

Josh Bendavid (Caltech/LPC) Image Calorimetry 4



The CMS Detector

~76k scintillating PbWO4 crystals

Silicon strips
  ~16m2   ~137k channels

~13000 tonnes

MUON CHAMBERS 

STEEL RETURN YOKE 

HADRON CALORIMETER (HCAL)
Brass + plastic scintillator
~7k channels

SILICON TRACKER

FORWARD
CALORIMETER 

PRESHOWER

SUPERCONDUCTING
SOLENOID 

CRYSTAL ELECTROMAGNETIC
CALORIMETER (ECAL)

Total weight 
Overall diameter 
Overall length
Magnetic field

: 14000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

Niobium-titanium coil
carrying ~18000 A

Pixels (100 x 150 μm2)
  ~1m2      ~66M channels
Microstrips (80-180μm)
  ~200m2   ~9.6M channels

Steel + quartz fibres
~2k channels

CMS Detector
Pixels
Tracker
ECAL
HCAL
Solenoid
Steel Yoke
Muons

Barrel:   2250 Drift Tube & 480 Resistive Plate Chambers
Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers
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Electromagnetic shower in ECAL

Transversely segmented (2D) calorimeter, longitudinally
homogeneous (no segmentation or passive layers)

Crystals are approximately 1R2
M at front face →∼ 95%

containment in 3x3 grid, > 99% in 5x5 grid
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Parametrized Local Containment Corrections

Appropriate energy ratios are a good proxy for impact location
relative to crystal center → Local containment losses can be
parametrized in-situ
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Parametrized Local Containment Corrections

Significant improvement on energy resolution, but even after
corrections, resolution is better for central incidence
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Material Interactions and Global Containment
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(a) Tracker Material Budget

Lots of material in front of the ECAL, significant probability
of photon conversions and bremsstrahlung from electrons
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Material Interactions and Global Containment
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Reconstruction forms Superclusters extended in φ to collect conversion
legs/bremsstrahlung spread out by magnetic field

Soft conversion legs and associated bremsstrahlung may not reach
calorimeter or arrive too far to be included in Supercluster
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Pileup in CMS

(a) Event with 29 vertices
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(b) Energy Density vs pileup

Additional energy from pileup contaminates isolation cones, but also the
shower itself, (8 TeV data collected with an average of 20 pileup
interactions per crossing)

Contamination depends on the size of the cluster
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Photon/Electron Energy Reconstruction/Regression
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(a) Barrel
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(b) Endcap

High-level corrections to Super Cluster energy with BDT regression based
on ∼high level features (shower shape variables, different energy ratios,
cluster location, pileup energy density, etc)
Reconstructed Z mass in data with different levels of energy
reconstruction and corrections

Progression clearly visible even with 2.5 GeV natural Z width
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Energy Regression: Predicted Response Distribution

Semi-parametric regression provides a prediction for the full
lineshape (here showing simulation vs regression-prediction for
target variable ETrue/ERaw )

Total predicted pdf is given by sum of predicted lineshape for
each simulation event
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Inside the corrections
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R9 = E3x3/ESC is an effective, but not 100% pure conversion tagging
variable (electrons and photons treated separately, no explicit converted
vs unconverted distinction)

Correction vs η has a non-trivial correlation with R9 (and other shower
profile variables)
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Per-photon Resolution Estimate
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(a) Correction
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(b) post-correction resolution

Strong, but non-trivial relationship between size of correction and
post-correction resolution (size of effect vs photon-to-photon fluctuations)

Per-photon resolution estimate mapped with the full granularity of the
multidimensional space used to derive the corrections
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Per-photon Resolution Estimate
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(c) H → γγ Worst Cate-
gory

In a resonance search, per-photon resolution estimate can be used to

construct a per-event mass resolution estimate σm
mγγ

= 1
2

√
σ2
E1

E2
1

+
σ2
E2

E2
2

Can be used to select or categorize events to make optimal use of highest
resolution events (two unconverted photons in the center of the detector,
incident on the center of the crystal, far from module boundaries)

In-situ estimate of the accuracy is important
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Photon Identification

BDT score of the photon ID
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 (13 TeV)-112.9 fbCMS Preliminary
Particle identification at the
shower level so far mostly cast as
a binary classification problem

Main background for photons is
boosted/collinear π0 → γγ decays
inside jets

BDT-based classifiers exploit high

level shower width variables and

energy ratios as well as isolation
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Calorimeters for HL-LHC

HL-LHC implies a large increase in beam intensity and
pileup→up to 140-200 interactions per crossing
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Calorimeters for HL-LHC

CMS forward calorimeter to be replaced with High Granularity
Calorimeter including 28+12 high granularity silicon layers (+absorber)
High granularity provides more information to disentangle nearby or
overlapping showers
Much more difficult to construct high level features by hand
summarizing relevant info → deep learning on lower level inputs
strongly motivated

Closely related to silicon calorimeter designs for future linear collider

experiments
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CMS HGCAL

Calorimetry starts to converge towards a 3D image-like problem

Clustering/separating overlapping particles in high pileup environments is
non-trivial→ machine learning may be useful also for pattern recognition
(moving beyond traditional regressions and classifiers)

Beyond model accuracy, computational complexity of inference is critical

(possible large gain over traditional algorithms with combinatorics)
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Linear Collider Calorimeters

High granularity silicon + absorber
design also employed for proposed
linear collider detectors (for example
the “LCD Calorimeter” CLIC detector
design shown here)

Simpler test case for machine learning

techniques in several ways

Lower density environment →
more easily factorize
clustering/pattern recognition
from regression and
classification-type problems
Rectangular geometry

Fewer restrictions on use of

simulation outside of

collaborations → see Amir’s talk
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Machine Learning on Image Datasets

Extensive work on 2D image recognition, generative models,
etc in the literature

In most cases extendable to 3D images a la high granularity
calorimeter showers
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Simple Example for LCD Calorimeter

(a) Example Architec-
ture

(b) ROC Curves

N. Howe

“Simple” binary classification problem (photon vs π0)
Different network architectures tested including dense, 2D, and 3D
convolutional layers

More recent progress to be discussed during hands-on session this

afternoon
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Applications of Generative Models

S. Vallecorsa et. al. https:

//indico.cern.ch/event/627852/contributions/2538513/

attachments/1450473/2236405/MLsimulation_GeantV.pdf

Calorimeter Showers can be
simulated accurately with
detailed detector simulation
and per-particle tracking
(GEANT), but this is
extremely cpu intensive

HL-LHC physics program
requires billions of simulated
events → trillions of
simulated calorimeter showers

Generative deep learning
models provide a possible
path to fast, but high
accuracy simulations

See Sofia’s talk Wed.

Morning
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Outlook

Development of deep learning techniques for calorimetry
closely linked to development of new detector designs and
associated reconstruction and simulation

Existing techniques from 2D image
processing/recognition/generation serve as an important
foundation

Some challenges:

Optimization of network architectures
Extension of convolutional techniques to non-rectangular
geometries
Incorporation of precision timing measurements within the
shower
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Backup
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Regression Energy Corrections

Photon energy reconstruction in CMS:

Ee/γ = Fe,γ(x̄)×
Ncrystals∑

i

G (GeV /ADC )× Si (t)× ci × Ai

Two main components to photon energy resolution which at least partly

factorize:

1 Crystal level calibration (ADCtoGEV, Intercalibration,
transparency corrections)

2 Higher level reconstruction (local containment, global
containment, PU contamination)

Shower containment is complex and not clear if/how different
contributions factorize

Best performance is obtained with multivariate regression using BDT
with cluster η, φ, shower shape variables, local coordinates, and number
of primary vertices/median energy density as input

Regression is trained on real electrons/photons in Monte Carlo, using the
ratio of the generator level energy to the raw cluster energy, also provides
a per photon estimate of the energy resolution
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Evolution of Regression Energy Corrections in CMS

Photon energy regression in CMS initially trained using TMVA
BDT implementation

Physics performance was ok, but serious problems with size on
disk and memory consumption (1GB xml files!)

CMS has an in-house BDT storage format, persistable in root
file or conditions database, disk/memory/cpu efficient (tree
structure represented in flattened arrays, one inlined while
loop for evaluation). Can convert weights from TMVA or
produce with native BDT training tool written to exploit
parallelization, speed up training with large datasets, produce
more compact trees

Later CMS moved to “semi-parametric” regression
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Evolution of Regression Energy Corrections in CMS:
“Traditional” Regression

Multivariate techniques used in general to overcome lack of knowledge of
multidimensional likelihood using finite event samples

Traditional regression as used so far based on minimization of Huber loss
function for target prediction F (x̄) given target variable y = ETrue/ERaw

for a set of input variables x̄ (in our case cluster position, shower profile
and pileup variables)

L =

{
1
2
(F − y)2 |F − y | ≤ δ
δ (|F − y | − δ/2) |F − y | > δ

Minimized the square deviation out to some cutoff (by default ±1σ) and
the linear deviation beyond that

No built-in estimate of the per-photon resolution, accomplished with a
second training on an independent subset of the training sample with
target y = |ECor/ERaw − ETrue/ERaw |
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Semi-parametric Regression

Start with ansatz that in any infinitesimal slice of phase space
in x̄ , the energy response distribution is given by a double
crystal ball (ie gaussian core with power law tails on both
sides)

In terms of ETrue/ERaw the right tail (undermeasurement of
the energy) corresponds to the usual radiative losses, etc,
whereas the left tail (overmeasurement of the energy) comes
from pileup, etc.

p(y |x̄) = DoubleCrystalBall (y |µ(x̄), σ(x̄), αleft(x̄), nleft(x̄), αright(x̄), nright(x̄))
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Semi-parametric Regression

The log likelihood ratio for a training sample can be written
simply as

L = −
∑

MCPhotons

ln p(y |x̄)

Minimize this loss function directly with gradient boosting,
where µ(x̄), σ(x̄), nleft(x̄), nright(x̄) are regression outputs
estimated by BDT’s (using RooFit-based bdt-training tool,
which ensures proper pdf normalization, etc)

This gives a simultaneous estimate for energy correction and
resolution among other things
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Inside the corrections
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Correction is parametrized and plotted with respect to the supercluster
energy, but the corrected energy can also be considered a non-trivial
weighting of supercluster, 3x3, 5x5, and other energy sums/ratios in input
(dynamic noise/pileup vs containment tradeoff as a function of shower
energy, inferred impact position, etc)
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Pileup Contamination

Number of collision vertices
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(c) Scale vs Pileup
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(d) Resolution vs Pileup

After corrections, scale is flat vs pileup, resolution only modestly degraded
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Energy Scale and Resolution

Photon Energy Scale and Resolution in data measured with Z → ee
events, applying either final photon-trained regression corrections, or
equivalent electron-trained version

Monte Carlo is smeared to match data resolution

Data energy scale is adjusted to match Monte Carlo

Energy scale is determined very precisely from (millions of) Z → ee
events, remaining systematic uncertainties from electron-photon
extrapolation and extrapolation in energy

Overall systematic uncertainty on higgs mass measurement (dominated
by energy scale uncertainty) 0.12% (but per-photon energy scale
uncertainty varies according to detector region and photon quality)
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Result
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Already a precision measurement of the mass, CMS H → γγ most precise
single measurement

Multivariate corrections and use of per-photon resolution in
categorization play a crucial role
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Higgs→ γγ: All Together

Strategy: Process available information into quantities with straightforward physical interpretations in
order to combine per-event knowledge of expected mass resolution and S/B into a single “Diphoton MVA”
variable
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