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C L A S S I C  J E T  P R O B L E M
• A jet is a collimated spray of energetic particles originating 

from the fragmentation of scattered partons (quarks or gluons) 

• One classic problem is identifying whether the jet originates 
from the decay of a boosted particle W/Z/H/t or simply from a 
quark/gluon (QCD)
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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S TAT E  O F  T H E  A R T
• Many techniques to aid in the identification of heavy particles have been developed 

such as  

• N-subjettiness [arXiv:1011.2268] and energy correlation functions [arXiv:1305.0007] 
which provide discrimination by looking at the shape of the jet 

• Jet trimming [arXiv:0912.1342], pruning [arXiv:0912.0033], and soft drop [arXiv:
1402.2657] algorithms which remove “soft” radiation to better identify the “hard” 
part of the jet

1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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Jet shape tagging variables
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Particle energy pattern within a jet used to identify “multi-prong” jets 

N-subjettiness Energy Correlation Functions (ECF)

4 3 Reconstruction of top jets

successfully decomposed then the jet has four subjets. If the secondary decomposition succeeds
on one subcluster and fails on the other, than this jet has three subjets.

The following variables, defined for each jet passing the algorithm, can be used to tag top jets:

• Jet Mass mjet - The mass of the four-vector sum of the constituents of the hard jet.
• Number of Subjets Nsubjets - The number of subjets found by the algorithm.
• Minimum Pairwise Mass mmin - The three highest pT subjets are taken pairwise,

and the invariant mass of each pair is calculated via
mij =

q
(Ei + Ej)2 � (~pi + ~pj)2. mmin is the mass of the pair with the lowest invariant

mass (mmin = min[m12, m13, m23]). This variable is not defined for jets with less than
three subjets.

Jets that have mass close to the top mass, at least three subjets, and minimum pairwise mass
close to the W mass are tagged as top jets. Only jets with a transverse momentum greater
than 350 GeV/c are considered, as at lower momenta the decay products of the hadronically
decaying top are not expected to be merged in one single jet with a distance parameter of
R = 0.8.

3.2 N-subjettiness

N-subjettiness is a jet shape variable designed to measure how consistent a jet is with a hypoth-
esis of having N subjets [4][5]. The N-subjettiness jet shape variable is defined by:

tN =
Ânconstituents

i=1 pT,i min{DR1,i, DR2,i, ..., DRN,i}
Ânconstituents

i=1 pT,iR
(3)

Here N represents the number of subjets in the hypothesis being tested. The summation runs
over all particle flow jet constituents (”i”). pT,i is the transverse momentum of constituent i. The
quantity min{DR1,i, ..., DRN,i} is the minimum of the DR distances between the ith constituent
and each subjet axis in the hypothesis. R is the jet distance parameter. The denominator is a
normalization factor to ensure 0 < tN < 1.

The tN variable is therefore the pT weighted sum of the angular separation between each jet
constituent and the closest subjet axis. Small values of tN represent jets which are consistent
with having N or fewer subjets. In this case the jet constituents are closely aligned with the
subjet axes. Subjet axes are determined by a one-pass optimization procedure which minimizes
tN[5].

N-subjettiness becomes a more effective discriminator by taking the ratio of jet shapes: tN/tN�1.
A top jet is expected to have 3 subjets and thus t3/t2 provides powerful top jet discrimination.

Selecting jets based on their N-subjettiness value (tN) is infrared (IR) safe [25], however select-
ing jets based on the ratio tN/tN�1 is not IR safe [25] but is calculable[26]. The t3/t2 selection
can be made IR safe by also making a cut on t2/t1 [25]. We find after tagging a top jet with the
requirement t3/t2 < 0.55, additionally requiring t2/t1 > 0.1 is close to 100% efficient for both
signal and background jets and provides IR safety.

3.3 HEP top-tagging algorithm

The HEP Top Tagger uses a collection of Cambridge/Aachen jets with a distance parameter
R = 1.5 (‘fat jets’). To identify top jets with the HEP Top Tagger algorithm [3], the following

Determines how consistent a jet is with 
having N or fewer subjets

!N → 0 ⟹ energy spread is close to the subjet axes 

Better discrimination by using ratios (ex. τ3/τ2)

D2(β) =
ECF(3, β)ECF(1, β)3

ECF(2, β)3

Boost 2013 report 
arXiv:1504.00679

Jet constituent based observables sensitive to 
N subjet substructure

ECF ratios (C2,D2, etc.) for boosted object 
discrimination (Small C2 ⟹ 2 subjets) 

β parameter allows access to different angular scales 
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M A C H I N E  L E A R N I N G  A P P S
• Many groups have also tried to apply machine learning to aid in the 

solution of this problem, such as 

• Convolutional neural networks using an analogy between 
calorimeters and images [arXiv:1407.5675, arXiv:1511.05190, 
arXiv:1704.02124] 

• Recursive neural networks built upon an analogy between QCD 
and natural languages [arXiv:1702.00748]
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

h

jet
1 (tj) is its embedding. The final output hevent

M (e) (see
Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L2 weight matrix norm. A
down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

[L. de Oliveira, et al. arXiv:1511.05190]
[G. Louppe, et al. 
arXiv:1702.00748]

https://arxiv.org/abs/1407.5675
https://arxiv.org/pdf/1511.05190.pdf
https://arxiv.org/abs/1704.02124
https://arxiv.org/abs/1702.00748
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C O M PA C T  M U O N  S O L E N O I D
• CMS is one of the two general-

purpose detectors at the LHC 

• 3.8 T magnetic field bends 
particle trajectories allowing for 
excellent tracking 

• ECAL: PbWO4 crystals (high 
density, short radiation length 
and Molière radius) 

• HCAL: plastic scintillator and 
brass absorber interleaved  

• Muon system: drift tubes (DT), 
resistive plate chambers (RPC), 
and cathode strip chambers 
(CSC)
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PA R T I C L E  F L O W  R E C O N S T R U C T I O N
• "Particle flow” (PF) reconstruction: holistic approach to particle reconstruction, 

combining measurements in the tracker, calorimeters, and muon system to 
provide an improved determination of the energy and direction of each class of 
particle 

• Five main classes: Muon, Electron, Charged Hadron, Neutral Hadron, and 
Photon

6

1

1 Introduction1

Modern general-purpose detectors at high-energy colliders are based on the concept of cylin-2

drical detection layers, nested around the beam axis. Starting from the beam interaction region,3

particles first enter a tracker, in which charged-particle trajectories (tracks) and origins (vertices)4

are reconstructed from signals (hits) in the sensitive layers. The tracker is immersed in a mag-5

netic field that bends the trajectories and allows the electric charges and momenta of charged6

particles to be measured. Electrons and photons are then absorbed in an electromagnetic calor-7

imeter (ECAL). The corresponding electromagnetic showers are detected as clusters of energy8

recorded in neighbouring cells, from which the energy and direction of the particles can be de-9

termined. Charged and neutral hadrons may initiate a hadronic shower in the ECAL as well,10

subsequently fully absorbed in the hadron calorimeter (HCAL). The corresponding clusters11

are used to estimate their energies and directions. Muons and neutrinos traverse the calorime-12

ters with little or no interactions. While neutrinos escape undetected, muons produce hits in13

additional tracking layers generally called muon detectors, in the same way as in the central14

tracker. This simplified view is graphically summarized in Fig. 1, which displays a sketch of a15

transverse slice of the CMS detector [1].16

1m 2m 3m 4m 5m 6m 7m0m

Transverse slice
through CMS

2T

T

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed
with Muon chambers

Key:
Electron
Charged Hadron (e.g. Pion)

Muon

Photon
Neutral Hadron (e.g. Neutron)

Figure 1: A sketch of the specific particle interactions in a transverse slice of the CMS detector,
from the beam interaction region to the muon detector. The muon and the charged pion are
positively charged, and the electron is negatively charged.
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• PF jets are clustered from PF candidates (belonging to 
the 5 classes) using anti-kT algorithm [arXiv:0802.1189] 
and FastJet [arXiv:1111.6097] with jet radius parameter 
R=0.7

P F  J E T  R E C O N S T R U C T I O N

7

A priori it is not clear whether it is better to have regular (‘soft-resilient’) or less regular (soft-
adaptable) jets. In particular, regularity implies a certain rigidity in the jet algorithm’s ability to
adapt a jet to the successive branching nature of QCD radiation. On the other hand knowledge
of the typical shape of jets is often quoted as facilitating experimental calibration of jets, and
soft-resilience can simplify certain theoretical calculations, as well as eliminate some parts of the
momentum-resolution loss caused by underlying-event and pileup contamination.

Examples of jet algorithms with a soft-resilient boundary are the plain “iterative cone” algo-
rithm, as used for example in the CMS collaboration [6], and fixed-cone algorithms such as Pythia’s
[7] CellJet. The CMS iterative cone takes the hardest object (particle, calorimeter tower) in the
event, uses it to seed an iterative process of looking for a stable cone, which is then called a jet.
It then removes all the particles contained in that jet from the event and repeats the procedure
with the hardest available remaining seed, again and again until no seeds remain. The fixed-cone
algorithms are similar, but simply define a jet as the cone around the hardest seed, skipping the
iterative search for a stable cone. Though simple experimentally, both kinds of algorithm have the
crucial drawback that if applied at particle level they are collinear unsafe, since the hardest particle
is easily changed by a quasi-collinear splitting, leading to divergences in higher-order perturbative
calculations.1

In this paper it is not our intention to advocate one or other type of algorithm in the debate
concerning soft-resilient versus soft-adaptable algorithms. Rather, we feel that this debate can be
more fruitfully served by proposing a simple, IRC safe, soft-resilient jet algorithm, one that leads
to jets whose shape is not influenced by soft radiation. To do so, we take a quite non-obvious route,
because instead of making use of the concept of a stable cone, we start by generalising the existing
sequential recombination algorithms, kt [1] and Cambridge/Aachen [2].

As usual, one introduces distances dij between entities (particles, pseudojets) i and j and diB

between entity i and the beam (B). The (inclusive) clustering proceeds by identifying the smallest
of the distances and if it is a dij recombining entities i and j, while if it is diB calling i a jet and
removing it from the list of entities. The distances are recalculated and the procedure repeated
until no entities are left.

The extension relative to the kt and Cambridge/Aachen algorithms lies in our definition of the
distance measures:

dij = min(k2p
ti , k2p

tj )
∆2

ij

R2
, (1a)

diB = k2p
ti , (1b)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 and kti, yi and φi are respectively the transverse momentum,

rapidity and azimuth of particle i. In addition to the usual radius parameter R, we have added a
parameter p to govern the relative power of the energy versus geometrical (∆ij) scales.

For p = 1 one recovers the inclusive kt algorithm. It can be shown in general that for p > 0
the behaviour of the jet algorithm with respect to soft radiation is rather similar to that observed
for the kt algorithm, because what matters is the ordering between particles and for finite ∆ this
is maintained for all positive values of p. The case of p = 0 is special and it corresponds to the
inclusive Cambridge/Aachen algorithm.

1This is discussed in the appendix in detail for the iterative cone, and there we also introduce the terminology
iterative cone with split–merge steps (IC-SM) and iterative cone with progressive removal (IC-PR), so as to distinguish
the two broad classes of iterative cone algorithms.

2

Negative values of p might at first sight seem pathological. We shall see that they are not.2 The
behaviour with respect to soft radiation will be similar for all p < 0, so here we will concentrate on
p = −1, and refer to it as the “anti-kt” jet-clustering algorithm.

2 Characteristics and properties

2.1 General behaviour

The functionality of the anti-kt algorithm can be understood by considering an event with a few well-
separated hard particles with transverse momenta kt1, kt2, . . . and many soft particles. The d1i =
min(1/k2

t1, 1/k
2
ti)∆

2
1i/R

2 between a hard particle 1 and a soft particle i is exclusively determined by
the transverse momentum of the hard particle and the ∆1i separation. The dij between similarly
separated soft particles will instead be much larger. Therefore soft particles will tend to cluster with
hard ones long before they cluster among themselves. If a hard particle has no hard neighbours
within a distance 2R, then it will simply accumulate all the soft particles within a circle of radius
R, resulting in a perfectly conical jet.

If another hard particle 2 is present such that R < ∆12 < 2R then there will be two hard jets. It
is not possible for both to be perfectly conical. If kt1 ≫ kt2 then jet 1 will be conical and jet 2 will
be partly conical, since it will miss the part overlapping with jet 1. Instead if kt1 = kt2 neither jet
will be conical and the overlapping part will simply be divided by a straight line equally between
the two. For a general situation, kt1 ∼ kt2, both cones will be clipped, with the boundary b between
them defined by ∆R1b/kt1 = ∆2b/kt2.

Similarly one can work out what happens with ∆12 < R. Here particles 1 and 2 will cluster to
form a single jet. If kt1 ≫ kt2 then it will be a conical jet centred on k1. For kt1 ∼ kt2 the shape
will instead be more complex, being the union of cones (radius < R) around each hard particle plus
a cone (of radius R) centred on the final jet.

The key feature above is that the soft particles do not modify the shape of the jet, while hard
particles do. I.e. the jet boundary in this algorithm is resilient with respect to soft radiation, but
flexible with respect to hard radiation.3

The behaviours of different jet algorithms are illustrated in fig. 1. We have taken a parton-level
event together with ∼ 104 random soft ‘ghost’ particles (as in [4]) and then clustered them with
4 different jet algorithms. For each of the partonic jets, we have shown the region within which
the random ghosts are clustered into that jet. For the kt and Cambridge/Aachen algorithms, that
region depends somewhat on the specific set of ghosts and the jagged borders of the jets are a
consequence of the randomness of the ghosts — the jet algorithm is adaptive in its response to soft
particles, and that adaptiveness applies also to the ghosts which take part in the clustering. For
SISCone one sees that single-particle jets are regular (though with a radius R/2 — as pointed out
in [4]), while composite jets have more varied shapes. Finally with the anti-kt algorithm, the hard
jets are all circular with a radius R, and only the softer jets have more complex shapes. The pair
of jets near φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one
is much softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

2Note that, for p < 0, min(k2p
ti , k

2p
tj ) differs from another possible extension, [min(k2

ti, k
2
tj)]

p, which can lead to
strange behaviours.

3For comparison, IC-PR algorithms behave as follows: with R < ∆12 < 2R, the harder of the two jets will be
fully conical, while the softer will be clipped regardless of whether pt1 and pt2 are similar or disparate scales; with
∆12 < R the jet will be just a circle centred on the final jet.

3

https://arxiv.org/abs/0802.1189
http://arxiv.org/abs/1111.6097
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C M S  O P E N  D ATA
• 2011 data is second public release of CMS data (this time 

with simulation) [portal] 

• Data format is AOD (same used by CMS analysts)
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P R E PA R AT I O N  O F  T H E  D ATA
• Using modified publicly available CMSSW code [github] 

running over different samples of CMS open simulation to 
produce flat numpy arrays 

• Simulation datasets: 

• ttbar (for boosted W sample):  
TT_weights_CT10_TuneZ2_7TeV-powheg-pythia-tauola 

• QCD (for background QCD jets):  
QCD_Pt-80to120_TuneZ2_7TeV_pythia6  
QCD_Pt-120to170_TuneZ2_7TeV_pythia6  
QCD_Pt-170to300_TuneZ2_7TeV_pythia6  
QCD_Pt-300to470_TuneZ2_7TeV_pythia6  
QCD_Pt-470to600_TuneZ2_7TeV_pythia6

9

https://github.com/jmduarte/2011-jet-inclusivecrosssection-ntupleproduction-optimized
http://doi.org/10.7483/OPENDATA.CMS.8E2V.PX7B
http://doi.org/10.7483/OPENDATA.CMS.PUTE.7H2H
http://doi.org/10.7483/OPENDATA.CMS.QJND.HA88
http://doi.org/10.7483/OPENDATA.CMS.WKRR.DCJP
http://doi.org/10.7483/OPENDATA.CMS.X3XQ.USQR
http://doi.org/10.7483/OPENDATA.CMS.BKTD.SGJX
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D ATA S E T  F E AT U R E S

10

• Event level features:  
('run', 'lumi', 'event', 'met', 'sumet', 'rho', 'pthat', 
‘mcweight’, ‘njet_ak7’) 

• Jet-level features: 
(‘jet_pt_ak7’, 'jet_eta_ak7', 'jet_phi_ak7', 'jet_E_ak7', 
'jet_msd_ak7', 'jet_area_ak7', 'jet_jes_ak7', 
'jet_tau21_ak7', ‘jet_isW_ak7’, ’jet_ncand_ak7') 

• PF-candidate-level features:  
(‘ak7pfcand_pt’, 'ak7pfcand_eta', 'ak7pfcand_phi', 
'ak7pfcand_id', 'ak7pfcand_charge', 'ak7pfcand_ijet')

• Boolean ‘jet_isW_ak7` is 1 if 
generator-level W boson is matched 
within dR<0.7 of the jet and both 
quark daughters have dR<0.7

Jesse Thaler — Probing the Core of QCD 27

Simple discriminant requires	
new calculational techniques
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D ATA S E T  L O C AT I O N

• Available on CMS LPC: 
root://cmseos.fnal.gov//eos/uscms/store/user/woodson/DSHEP2017/ 

• and Fermilab public dCache: 
root://fndca4a.fnal.gov//pnfs/fnal.gov/usr/hlml/persistent/
DSHEP2017/ 

• Also be available on Amazon S3  storage (special thanks to B. 
Holzman):  
s3://ds-hep/ 

• Small subset available on Dropbox: 
https://www.dropbox.com/sh/zgrsduzuaclmzs2/
AADvCY1i6uz3A5UhGrPrY30da?dl=0
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root://cmseos.fnal.gov//eos/uscms/store/user/woodson/DSHEP2017/
root://fndca4a.fnal.gov//pnfs/fnal.gov/usr/hlml/persistent/DSHEP2017/
s3://ds-hep/
https://www.dropbox.com/sh/zgrsduzuaclmzs2/AADvCY1i6uz3A5UhGrPrY30da?dl=0
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H A N D S - O N  S E S S I O N
• Example notebook [github] shows how to access the data and build classifiers 

based on a fully connected NN and a convolutional NN 

• Possible extensions: tuning metaparameters, testing different pre-processing steps, 
separating image representation into layers based PF candidate classes, training a 
recursive NN or a completely new network architecture we haven’t thought of! 

• Any feedback: missing features? different data structure? let us know! 

• Sign up at google doc [doc] and join the slack channel [slack]

12

QCD jet image W jet image ROC curve

https://github.com/jmduarte/scientific-python-hats/tree/master/cms-open-data-ml
https://docs.google.com/spreadsheets/d/1AbRrW90wHX4xvIHKl00VQFpj9pUG0YFrr7UDcrLY670/edit#gid=0
https://join.slack.com/dshep2017/shared_invite/MTgwNzE1NTE5ODMxLTE0OTQxNzYyNjEtNzYzZjk1MTRmMQ
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B A C K U P

C M S  O P E N  D A TA  M L  -  J E T S
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D ATA S E T  F E AT U R E S
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• Event level features:  
('run', 'lumi', 'event', 'met', 'sumet', 'rho', 'pthat', 
‘mcweight’, ‘njet_ak7’) 

• Jet-level features: 
(‘jet_pt_ak7’, 'jet_eta_ak7', 'jet_phi_ak7', 'jet_E_ak7', 
'jet_msd_ak7', 'jet_area_ak7', 'jet_jes_ak7', 
'jet_tau21_ak7', ‘jet_isW_ak7’, ’jet_ncand_ak7') 

• PF-candidate-level features:  
(‘ak7pfcand_pt’, 'ak7pfcand_eta', 'ak7pfcand_phi', 
'ak7pfcand_id', 'ak7pfcand_charge', 'ak7pfcand_ijet')

https://github.com/cms-sw/cmssw/blob/CMSSW_5_3_32/DataFormats/ParticleFlowCandidate/src/PFCandidate.cc#L148-L163

https://github.com/cms-sw/cmssw/blob/CMSSW_5_3_32/DataFormats/ParticleFlowCandidate/src/PFCandidate.cc#L148-L163


Javier Duarte 
Fermilab

L A R G E  H A D R O N  
C O L L I D E R

• Proton-proton collisions at  
8 TeV in 2012
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