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Why worry about moving data?

We’re all here because we think that HEP can benefit from
machine learning techniques.

The most advanced techniques are being developed outside of HEP,
using (what are becoming) industry standard tools.

Problem: our HEP protocols and formats won’t work with them
without some modification or export.

This talk is about solutions to that problem.
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Goals of this talk

I make you aware of what’s possible

I introduce some software tools

I invite you to tell me what’s needed.
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ROOT and Numpy
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root numpy

ROOT is the standard for HEP
data storage and processing.

Numpy is the standard for the
scientific Python ecosystem:
SciPy, Scikit-Learn, TensorFlow,

Keras, PyTorch, DyNet, MinPy, MXNet. . .

root numpy from Scikit-HEP provides high-
level translation to/from ROOT TTrees and
Numpy arrays.

http://scikit-hep.org/root_numpy/
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Examples

import root_numpy

# get an array from a ROOT file named by string
filename = root_numpy.testdata.get_filepath("test.root")
array1 = root_numpy.root2array(filename, "tree")

# or get an array from a PyROOT TFile/TTree
import ROOT
rootfile = ROOT.TFile(filename)
roottree = rootfile.Get("tree")
array2 = root_numpy.tree2array(roottree)

Use TTree::Draw syntax to transform branches and cut events.

array3 = root_numpy.tree2array(roottree,
branches=["x", "y", "sqrt(y)", "TMath::Landau(x)"],
selection="z > 0")
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Worth noting. . .

I Although root numpy currently loads whole branches into
memory at once, it’s possible to extend to streaming C++
APIs (hint: TensorFlow Queues).

I There are other extensions “out there,” such as this one:

https://github.com/ibab/root_pandas

I Scikit-HEP is a metapackage (developers below) to try to
make things like this easier to find.

Noel Dawe (University of Melbourne), Vanya Belyaev (ITEP), Sasha
Mazurov (University of Birmingham), Eduardo Rodrigues (University of
Cincinnati), David Lange (Princeton University), and myself.
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direct to Numpy
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Skip the middleman

root numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

But if you don’t already have the ROOT files, generating and then
converting them is awkward, especially if the dataset is large.

Fortunately, the Numpy format is extremely simple.

I a Numpy array is a plain C array interpreted by metadata
(data type, number of elements, endianness, C vs. Fortran-style stride. . . )

I you can wrap any region of memory as a Numpy array

I a Numpy file is a literal copy of the array with a header
I you can write Numpy files with minimal code
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Examples of wrapping arrays

If PyROOT gives you an array.array, wrap it like this:

import numpy
numpy_array = numpy.frombuffer(array_from_root)

Now it has Numpy powers.

As long as you perform in-place operations, like

# overwrite all elements x with sin(x)
numpy.sin(numpy_array, numpy_array)
# set all values to 3.14
numpy_array[:] = 3.14

it will modify the same memory that ROOT is looking at.

With great power comes great responsibility: if ROOT deletes this
array and you continue to modify it, you will corrupt memory,
causing a segmentation fault at best.
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Examples of wrapping arrays

You can split a Python script into parallel processes using its
builtin multiprocessing module. These processes can share a
block of memory, which you can wrap with Numpy.

See https://goo.gl/NPwcSL for an example.

Another possible use: point Python and a C++ framework (e.g.
Athena or CMSSW) to the same shared memory to transfer data
between them at runtime.

Also known as a “common block.” :)

(A good implementation would be wrapped in a thread-safe,
type-safe API, of course!)
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Examples of wrapping arrays
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Knights Landing, MCDRAM
Knights Landing, normal RAM

32-core machine, normal RAM

Even use non-standard allocators
(this one allocates memory on
Knight’s Landing MCDRAM).

import ctypes
import numpy

ZILLION = 1000000

libnuma = ctypes.cdll.LoadLibrary("libnuma.so")
libnuma.numa_alloc_local.restype = ctypes.POINTER(ctypes.c_double)
ptr = libnuma.numa_alloc_local(ctypes.c_size_t(ZILLION))

ptr.__array_interface__ =
{"version": 3,
"typestr": numpy.ctypeslib._dtype(type(ptr.contents)).str,
"data": (ctypes.addressof(ptr.contents), False),
"shape": (ZILLION,)}

asarray = numpy.array(ptr, copy=False)
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Writing Numpy files is easy, too

https://github.com/diana-hep/c2numpy

Pure-header C library: drop it in and write Numpy files.

#include "c2numpy.h"

c2numpy_init(&writer, "output/tracks", 1000);
c2numpy_addcolumn(&writer, "pt", C2NUMPY_FLOAT64);
c2numpy_addcolumn(&writer, "eta", C2NUMPY_FLOAT64);
c2numpy_addcolumn(&writer, "phi", C2NUMPY_FLOAT64);
c2numpy_addcolumn(&writer, "dxy", C2NUMPY_FLOAT64);
c2numpy_addcolumn(&writer, "dz", C2NUMPY_FLOAT64);

...

for (auto track = tracks->cbegin();
track != tracks->end();
++track) {

c2numpy_float64(&writer, track->pt());
c2numpy_float64(&writer, track->eta());
c2numpy_float64(&writer, track->phi());
c2numpy_float64(&writer, track->dxy());
c2numpy_float64(&writer, track->dz());

}
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industry standard formats

Avro/Thrift/ProtoBuf, Parquet/Feather, Arrow
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What about nested structure?

Numpy isn’t appropriate (efficient) for anything but flat-flat
ntuples: strictly columns of numbers, no std::vector<double>!

ROOT pioneered efficient storage of nested, hierarchical data with
built-in schema (TTrees), but today there are other options:

row-wise (“unsplit”) Avro, Thrift, ProtoBuf
columnar (“split”) Parquet, Feather
in-memory Arrow
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Abstract type systems

All of these formats are interconvertable and accessible in dozens
of programming languages because they’re all based on roughly the
same abstract type systems.

Data types are

null: only one possible value, usually not written explicitly

boolean: true or false

integer: whole numbers

float: floating-point numbers (usually with specified
precision)

string: usually UTF-8

list: arbitrary length collections of the above

record: structs whose fields are any of the above

union: one type or another type (tagged)

but no pointers/TRefs or class methods (functions).
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Automated conversion

https://github.com/diana-hep/rootconverter

is an unmaintained software package that converted ROOT files,
including any nested classes, into Avro format. It mapped ROOT’s
TStreamerInfo onto the corresponding abstract data types.

It could be resurrected or repurposed if there’s a need: the point is
that this is possible.
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Spark and the JVM
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Reading ROOT files in Spark

This was developed as part of a project to perform a CMS analysis
in Apache Spark.

https://cms-big-data.github.io/

Last year, we converted all data from ROOT to Avro because
Spark recognizes the Avro format (previous page).

This year, we’re using a pure Java implementation of the ROOT
format to load data directly into Spark.
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Tony Johnson
SLAC
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Viktor Khristenko
University of Iowa
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Example session (Spark)

Launch Spark with packages from Maven Central.

spark-shell --packages \
org.diana-hep:spark-root_2.11:0.1.11

Read ROOT file like any other format for a DataFrame.

import org.dianahep.sparkroot._
val df = spark.sqlContext.read.root(

"hdfs://path/to/files/*.root")

df.printSchema()
root
|-- met: float (nullable = false)
|-- muons: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)
| | |-- eta: float (nullable = false)
| | |-- phi: float (nullable = false)
|-- jets: array (nullable = false)
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Example session (PySpark)

Launch Spark with packages from Maven Central.

pyspark --packages \
org.diana-hep:spark-root_2.11:0.1.11
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Example session (Spark)

df.show()
+---------+--------------------+--------------------+
| met| muons| jets|
+---------+--------------------+--------------------+
| 55.59374|[[28.07075,-1.331...|[[194.19714,-2.65...|
|39.440292| []|[[93.64958,-0.273...|
|2.1817229|[[5.523367,-0.375...|[[96.09923,0.7058...|
| 80.5822|[[48.910114,-0.17...|[[165.2686,0.2623...|
| 84.43806| []|[[51.87823,1.6442...|
| 84.63146|[[33.84279,-0.062...|[[137.74776,-0.45...|
| 393.8167|[[25.402626,-0.66...|[[481.8268,-1.115...|
| 75.0873| []|[[144.62373,-2.21...|
|2.6512942|[[6.851382,2.3145...|[[72.08256,-1.713...|
|36.753353| []|[[72.7172,-1.3265...|
+---------+--------------------+--------------------+
only showing top 10 rows
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Example session (Spark)

(This is from a real CMS analysis.)

// Bring dollar-sign notation into scope.
import spark.sqlContext.implicits._

// Compute event weight with columns and constants.
df.select(($"lumi"*xsec/nGen) * $"LHE_weight"(309))

.show()

// Pre-defined function (notation’s a little weird).
val isGoodEvent = (

($"evtHasGoodVtx" === 1) &&
($"evtHasTrg" === 1) &&
($"tkmet" >= 25.0) &&
($"Mu_pt" >= 30.0) &&
($"W_mt" >= 30.0))

// Use it.
println("%d events pass".format(

df.where(isGoodEvent).count()))
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Example session (PySpark)

(This is from a real CMS analysis.)

# Python trick: make columns Python variables.
for name in df.schema.names:

exec("{0} = df[’{0}’]".format(name))

# Look at a few event weights.
df.select((lumi*xsec/nGen) * LHE_weight[309]).show()

# Pre-defined function (notation’s a little different).
isGoodEvent = (

(evtHasGoodVtx == 1) &
(evtHasTrg == 1) &
(tkmet >= 25.0) &
(Mu_pt >= 30.0) &
(W_mt >= 30.0))

# Use it.
print "{} events pass".format(

df.where(isGoodEvent).count())
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Example session (Spark)

spark-shell --packages \
org.diana-hep:spark-root_2.11:0.1.11, \
org.diana-hep:histogrammar_2.11:1.0.4

// Use Histogrammar to make histograms.
import org.dianahep.histogrammar._
import org.dianahep.histogrammar.sparksql._
import org.dianahep.histogrammar.bokeh._

// Define histogram functions with SparkSQL Columns.
val h = df.Label(

"muon pt" -> Bin(100, 0.0, 50.0, $"Mu_pt"),
"W mt" -> Bin(100, 0.0, 120.0, $"W_mt"))

// Plot the histograms with Bokeh.
val bokehhist = h.get("muon pt").bokeh()
plot(bokehhist)
val bokehhist2 = h.get("W mt").bokeh()
plot(bokehhist2)
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Example session (PySpark)

pyspark --packages \
org.diana-hep:spark-root_2.11:0.1.11, \
org.diana-hep:histogrammar_2.11:1.0.4

# Use Histogrammar to make histograms.
from histogrammar import *
import histogrammar.sparksql
histogrammar.sparksql.addMethods(df)

# Define histogram functions with SparkSQL Columns.
h = df.Label(

muon_pt = Bin(100, 0.0, 50.0, Mu_pt),
W_mt = Bin(100, 0.0, 120.0, W_mt))

# Plot the histograms with PyROOT.
roothist = h.get("muon_pt").plot.root("muon pt")
roothist.Draw()
roothist2 = h.get("W_mt").plot.root("W mt")
roothist2.Draw()
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Not just Spark

root4j (ROOT reader) is separate from spark-root.

root4j opens the door to all the Java-based big data tools.

As far as I’m aware, it is one of only five ROOT TTree readers:

standard ROOT C++

JsRoot JavaScript

root4j Java

RIO in GEANT C++

go-hep go
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Conclusing remarks

Perhaps you saw something here and thought,

I “I can use that to avoid my awful work-around!” or

I “I didn’t think that was possible! Now I can do something I
wouldn’t have considered before,” or

I “What I want to do is possible, but it will take some work.”

If so, contact me and I may be able to help. I know or am the
author of several of these packages, and can help you get started if
you need to develop something new.

pivarski@fnal.gov
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