Data plumbing:
moving data across frameworks

Jim Pivarski

Princeton University — DIANA

May 11, 2017

Why worry about moving data? €diana

We're all here because we think that HEP can benefit from
machine learning techniques.

Why worry about moving data? €diana

We're all here because we think that HEP can benefit from
machine learning techniques.

The most advanced techniques are being developed outside of HEP,
using (what are becoming) industry standard tools.

Why worry about moving data? €diana

We're all here because we think that HEP can benefit from
machine learning techniques.

The most advanced techniques are being developed outside of HEP,
using (what are becoming) industry standard tools.

Problem: our HEP protocols and formats won't work with them
without some modification or export.

Why worry about moving data? €diana

We're all here because we think that HEP can benefit from
machine learning techniques.

The most advanced techniques are being developed outside of HEP,
using (what are becoming) industry standard tools.

Problem: our HEP protocols and formats won't work with them
without some modification or export.

This talk is about solutions to that problem.

Team

Vo

Collabore

N

Establish infrastructure for a higher-level of
collaborative analysis, building on the successful
patterns used for the Higgs boson discovery and
enabling a deeper communication between the

theoretical community and the experimental
community

Faster Processing
Increase the CPU and 10 performance needed to
reduce the iteration time so crucial to exploring

new ideas

Products

DIANA Fellows Blog

Streamline efforts associated to reproducibility,
analysis preservation, and data preservation by
making these native concepts in the tools

Better So
Develop software to effectively exploit emerging
many- and multi-core hardware.
Promote the concept of software as a research
product.

Improve the interoperability of HEP tools with
the larger scientific software ecosystem,
incorporating best practices and algorithms
from other disciplines into HEP

Trainir

Provide training for students in all of our core
research topics.

Team Activities/Products DIANA Fellows Blog

Goals of this talk ¢diana

» make you aware of what's possible
» introduce some software tools

» invite you to tell me what's needed.

ROOT and Numpy

root_numpy ¢odiana

ROOT is the standard for HEP Numpy is the standard for the

data storage and processing. scientific Python ecosystem:
SciPy, Scikit-Learn, TensorFlow,

Keras, PyTorch, DyNet, MinPy, MXNet...

10 /50

http://scikit-hep.org/root_numpy/

root_numpy ¢diana

ROOT is the standard for HEP Numpy is the standard for the
data storage and processing. scientific Python ecosystem:
SciPy, Scikit-Learn, TensorFlow,

Keras, PyTorch, DyNet, MinPy, MXNet...

root_numpy from Scikit-HEP provides high-
/.\ level translation to/from ROOT TTrees and
SQ%_(IH:EP Numpy arrays.

http://scikit-hep.org/root_numpy/

11/50

http://scikit-hep.org/root_numpy/

Examples

import root_numpy

get an array from a ROOT file named by string
filename = root_numpy.testdata.get_filepath("test.root")
arrayl = root_numpy.root2array(filename, "tree")

or get an array from a PyROOT TFile/TTree
import ROOT

rootfile = ROOT.TFile (filename)

roottree = rootfile.Get ("tree")

array2 = root_numpy.treelarray (roottree)

12/50

Examples

import root_numpy

get an array from a ROOT file named by string
filename = root_numpy.testdata.get_filepath("test.root")
arrayl = root_numpy.root2array(filename, "tree")

or get an array from a PyROOT TFile/TTree
import ROOT

rootfile = ROOT.TFile (filename)

roottree = rootfile.Get ("tree")

array2 = root_numpy.treelarray (roottree)

Use TTree: :Draw syntax to transform branches and cut events.

array3 = root_numpy.treelarray (roottree,
branches=["x", "y", "sqgrt(y)", "TMath::Landau(x)"],
selection="2z > 0")

13/50

Worth noting. .. ¢diana

» Although root_numpy currently loads whole branches into
memory at once, it's possible to extend to streaming C++
APIs (hint: TensorFlow Queues).

» There are other extensions “out there,” such as this one:

https://github.com/ibab/root_pandas

» Scikit-HEP is a metapackage (developers below) to try to
make things like this easier to find.

Noel Dawe (University of Melbourne), Vanya Belyaev (ITEP), Sasha
Mazurov (University of Birmingham), Eduardo Rodrigues (University of
Cincinnati), David Lange (Princeton University), and myself.

14 /50

https://github.com/ibab/root_pandas

direct to Numpy

15/50

Skip the middleman ¢S diana

root_numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

16 /50

Skip the middleman ¢S diana

root_numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

But if you don't already have the ROOT files, generating and then
converting them is awkward, especially if the dataset is large.

17 /50

Skip the middleman ¢S diana

root_numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

But if you don't already have the ROOT files, generating and then
converting them is awkward, especially if the dataset is large.

Fortunately, the Numpy format is extremely simple.

18 /50

Skip the middleman ¢S diana

root_numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

But if you don't already have the ROOT files, generating and then
converting them is awkward, especially if the dataset is large.
Fortunately, the Numpy format is extremely simple.

> a Numpy array is a plain C array interpreted by metadata
(data type, number of elements, endianness, C vs. Fortran-style stride. . .)

> you can wrap any region of memory as a Numpy array

19/50

Skip the middleman ¢S diana

root_numpy is great if you have a lot of ROOT files and need to
analyze them in Python.

But if you don't already have the ROOT files, generating and then
converting them is awkward, especially if the dataset is large.
Fortunately, the Numpy format is extremely simple.

> a Numpy array is a plain C array interpreted by metadata
(data type, number of elements, endianness, C vs. Fortran-style stride. . .)

> you can wrap any region of memory as a Numpy array

» a Numpy file is a literal copy of the array with a header
» you can write Numpy files with minimal code

20 /50

Examples of wrapping arrays €9 diana

If PYyROOT gives you an array.array, wrap it like this:

import numpy
numpy_array = numpy.frombuffer (array_from_root)

Now it has Numpy powers.

21/50

Examples of wrapping arrays €9 diana

If PYyROOT gives you an array.array, wrap it like this:

import numpy
numpy_array = numpy.frombuffer (array_from_root)

Now it has Numpy powers.
As long as you perform in-place operations, like

overwrite all elements x with sin(x)
numpy.sin (numpy_array, numpy_array)
set all values to 3.14

numpy_arrayl[:] = 3.14

it will modify the same memory that ROOT is looking at.

22 /50

Examples of wrapping arrays €9 diana

If PYyROOT gives you an array.array, wrap it like this:

import numpy
numpy_array = numpy.frombuffer (array_from_root)

Now it has Numpy powers.
As long as you perform in-place operations, like

overwrite all elements x with sin(x)
numpy.sin (numpy_array, numpy_array)

set all values to 3.14
numpy_arrayl[:] = 3.14

it will modify the same memory that ROOT is looking at.

With great power comes great responsibility: if ROOT deletes this
array and you continue to modify it, you will corrupt memory,
causing a segmentation fault at best.

23 /50

Examples of wrapping arrays €9 diana

You can split a Python script into parallel processes using its
builtin multiprocessing module. These processes can share a
block of memory, which you can wrap with Numpy.

See https://goo.gl/NPwcSL for an example.

24 /50

https://goo.gl/NPwcSL

Examples of wrapping arrays €9 diana

You can split a Python script into parallel processes using its
builtin multiprocessing module. These processes can share a
block of memory, which you can wrap with Numpy.

See https://goo.gl/NPwcSL for an example.

Another possible use: point Python and a C++ framework (e.g.
Athena or CMSSW) to the same shared memory to transfer data
between them at runtime.

Also known as a “common block.” :)

(A good implementation would be wrapped in a thread-safe,
type-safe API, of course!)

25 /50

https://goo.gl/NPwcSL

Examples of wrapping arrays

10000

Even use non-standard allocators
(this one allocates memory on
Knight's Landing MCDRAM).

Knights Landing, MCDRAM %
Knights Landing, normal RAM 01
so00 |- 32-core machine, normal RAM m

*
6000 - * |

*

*%

import ctypes
import numpy

oo
m
o
0

2000 | B8

rate of memory-limited operation on 64-bit floats (MH2)

ZILLION = 1000000 % m e W @ m o

number of processes.
libnuma = ctypes.cdll.LoadLibrary ("libnuma.so")
libnuma.numa_alloc_local.restype = ctypes.POINTER (ctypes.c_double)
ptr = libnuma.numa_alloc_local (ctypes.c_size_t (ZILLION))

ptr.__array_interface__ =

{"version": 3,

"typestr": numpy.ctypeslib._dtype (type (ptr.contents)) .str,
"data": (ctypes.addressof (ptr.contents), False),

"shape": (ZILLION,)}

asarray = numpy.array (ptr, copy=False)

26/

50

Writing Numpy files is easy, too

https://github.com/diana-hep/c2numpy

Pure-header C library: drop it in and write Numpy files.

"c2numpy.h"

c2numpy_init (¢writer, "output/tracks", 1000);

c2numpy_addcolumn (&writer, "pt", C2NUMPY_FLOAT64);
c2numpy_addcolumn (&writer, "eta", C2NUMPY_FLOAT64);
c2numpy_addcolumn (&writer, "phi", C2NUMPY_FLOAT64);
c2numpy_addcolumn (&writer, "dxy", C2NUMPY_FLOAT64);
c2numpy_addcolumn (&writer, "dz", C2NUMPY_FLOAT64);

for (auto track = tracks->cbegin();
track != tracks->end();
++track) {
c2numpy_floaté4d (¢writer, track->pt());
c2numpy_float64 (¢writer, track->eta());
c2numpy_floaté64 (¢writer, track->phi());
c2numpy_float64 (¢writer, track->dxy());
c2numpy_float64 (¢éwriter, track->dz());

27 /50

https://github.com/diana-hep/c2numpy

industry standard formats

Avro/Thrift/ProtoBuf, Parquet/Feather, Arrow

28 /50

What about nested structure? € diana

Numpy isn't appropriate (efficient) for anything but flat-flat
ntuples: strictly columns of numbers, no std: :vector<double>!

29 /50

What about nested structure? € diana

Numpy isn't appropriate (efficient) for anything but flat-flat
ntuples: strictly columns of numbers, no std: :vector<double>!

ROOQOT pioneered efficient storage of nested, hierarchical data with
built-in schema (TTrees), but today there are other options:

row-wise (“unsplit”) Avro, Thrift, ProtoBuf
columnar (“split") Parquet, Feather
in-memory Arrow

30/50

Abstract type systems €9 diana

All of these formats are interconvertable and accessible in dozens
of programming languages because they're all based on roughly the
same abstract type systems.

Data types are
null: only one possible value, usually not written explicitly
boolean: true or false
integer: whole numbers
float: floating-point numbers (usually with specified
precision)
string: usually UTF-8
list: arbitrary length collections of the above
record: structs whose fields are any of the above
union: one type or another type (tagged)

but no pointers/TRefs or class methods (functions).

31/50

Automated conversion €9 diana

https://github.com/diana-hep/rootconverter

is an unmaintained software package that converted ROOT files,
including any nested classes, into Avro format. It mapped ROOT's
TStreamerInfo onto the corresponding abstract data types.

It could be resurrected or repurposed if there's a need: the point is
that this is possible.

32/50

https://github.com/diana-hep/rootconverter

Spark and the JVM

33/50

Reading ROOT files in Spark € diana

This was developed as part of a project to perform a CMS analysis
in Apache Spark.

https://cms-big-data.github.io/

Last year, we converted all data from ROOT to Avro because
Spark recognizes the Avro format (previous page).

This year, we're using a pure Java implementation of the ROOT
format to load data directly into Spark.

34 /50

https://cms-big-data.github.io/

FreeHEP ROOTIO H

-

FREE!

£
P

Last Published: 2013-03-01 | Version: 2.2.1

FreeHEP | JAS g | WIRED

General
Introduction
License
Team

User Info
Summary
API Doc
Jar File(s)
Dependencies
Forum @

Bug Reports >

Developer Info
Source Code

‘ Root Object Browser ‘

As an illustration of the use of the Java interface, we have built a sample application which is a simple Root Object
Browser. It can he used to open any Root file and look at all the objects inside the file. If you already have Java 2
installed (JDK 1.3), you can download the root.jar file containing the application, and run it using the command:

‘ java -jar root.jar ‘

(on Windows you can just double-click on the root.jar file). A screen shot of the application is show below. The pane
on the left shows the directory structure of the file. The object browser knows how to navigate directories
(TDirectories), trees (TTrees and TBranches) and these will all be shown in the left pane. Clicking on any object in

the left pane will cause the details of the object to be shown in the right pane. The right pane knows how to follow
embedded pointers to other objects.

-1o| |
File Help
©-] PION (FION) “| 2 Flag (Class TBranch)
& [RO (RO) |9 [class TNamed
@ [STAFF (STAFF) 9 [Class TObject
@ CICERN (W10 0O fU.munID =0

- [Categoryil (Category) [its = 50331648

@ [Flag/i (Flag) [Mame = Flag

©- [Agell (Age) [fTitle = Flagfi

D fCompress=1

[masketsize = 8000
[EntryOffsetien =0
[tiriteBasket= 1

) EntryNumber = 3354
[rotfset=0

[MaxBaskets = 1000

@] Senvice (Service)
©- [Childrens| (Children)
©- (] Gradell (Grade)

©- [Stepfl (Step)

© [T Hrweekil (Hnweek)
© [Costil (Cost)

® A Nivicinn/™ MDivieinn

35 /50

FreeHEP ROOTIO

FREE;

Last Published: 2013-03-01 | Version: 2.2.1

FreeHEP | JAS g | WIRED

General
Introduction
License
Team

User Info
Summary
API Doc

Jar File(s)
Dependencies
Forum @

Bug Reports >

Developer Info
Source Code

‘ Root Object Browser ‘

As an illustration of the use of the Java interface, we have built a sample application which is a simple Root Object
Browser. It can he used to open any Root file and look at all the objects inside the file. If you already have Java 2
installed (JDK 1.3), you can download the root.jar file containing the application, and run it using the command:

‘ java -jar root.jar ‘

(on Windows you can just double-click on the root.jar file). A screen shot of the application is show below. The pane
on the left shows the directory structure of the file. The object browser knows how to navigate directories
(TDirectories), trees (TTrees and TBranches) and these will all be shown in the left pane. Clicking on any object in

the left pane will cause the details of the object to be shown in the right pane. The right pane knows how to follow
embedded pointers to other objects.

F23Root Object Browser
File Help

@ 3 PION (FION) % [S1Flag (Class TBranch)
& [RO (RO) |9 [class TNamed
@ [STAFF (STAFF) © 3 Class Tobject
@ CICERN (M10) [funiqueln =0
- [Categoryil (Category) [its = 50331648
@ [Flagi (Flag) [Mame = Flag
@ [Agefl (Age) Y mitle = Flagfi
©-] Senvicedl (Service) [fcompress = 1
© [Childrenfl (Children) () masketsize = 8000
©- [Gradel (Grade) [) Entyorsetien =0
& 7 Stepfl (Step) [tiriteBasket= 1
© [Hiweeki (Hrweek)) EntryNumber = 3354
© [Costl (Cost) Dy orfset=0
& 8 Miicinnit Ak [y MaxBaskets = 1000

36 /50

Pull requests Issues Gist

[J diana-hep / rootdj @Watchv 10 fesStar 2 YFork 2
<> Code Issues 1 Pull requests o Projects o Wiki Pulse Graphs Settings

A fork of http://java.freehep.org/freehep-rootio/ with hooks for Spark DataFrames Edit

Add topics

D 45 commits i 2 branches © 2 releases 42 2 contributors s LGPL-2.1

Branch: master~ New pull request Create new file ~ Upload files Find file
“vkhris(enko making hadoop as provided dependency Latest commit 2a7bd47 on Mar 15
[src fixing issues with string and other minor updates 3 months ago
[E) .gitignore updating gitignore 6 months ago
[E) DATAFORMATS.md updating data format description 4 months ago
[E) LICENSE Initial commit 6 months ago
[E) README.md updated readme 6 months ago
B pom.xmi making hadoop as provided dependency 2 months ago
README.md

ROOT4J

A fork of http://java.freehep.org/freehep-rootio/
37 /50

Pull requests Issues Gist

[J diana-hep / rootdj @Watchv 10 fesStar 2 YFork 2
<> Code Issues 1 Pull requests o Projects o Wiki Pulse Graphs Settings

A fork of http://java.freehep.org/freehep-rootio/ with hooks for Spark DataFrames Edit

Add topics

D 45 commits i 2 branches © 2 releases 42 2 contributors s LGPL-2.1

Branch: master~ New pull request Create new file ~ Upload files Find file
“vkhris(enko making hadoop as provided dependency Latest commit 2a7bd47 on Mar 15
[src fixing issues with string and other minor updates 3 months ago
[E) .gitignore updating gitignore 6 months ago
[E) DATAFORMATS.md updating data format description 4 months ago
[E) LICENSE Initial commit 6 months ago
[E) README.md updated readme 6 months ago
B pom.xmi making hadoop as provided dependency 2 months ago
README.md

ROOT4J Viktor Khristenko

University of lowa
A fork of http://java.freehep.org/freehep-rootio/

38/50

Example session (Spark) €9 diana

Launch Spark with packages from Maven Central.

spark-shell —--packages \
org.diana-hep:spark-root_2.11:0.1.11

Read ROOT file like any other format for a DataFrame.

import org.dianahep.sparkroot.__
val df = spark.sglContext.read.root (
"hdfs://path/to/files/*.root")

df .printSchema ()

root
|-— met: float (nullable = false)
| —— muons: array (nullable = false)
\ |-— element: struct (containsNull = false)

\ | |-— pt: float (nullable = false)
| | |-— eta: float (nullable = false)
| | |-— phi: float (nullable = false)
|-— jets: array (nullable = false)

39 /50

Example session (PySpark) € diana

Launch Spark with packages from Maven Central.

pyspark —--packages \
org.diana-hep:spark-root_2.11:0.1.11

Read ROOT file like any other format for a DataFrame.

df = sglContext.read \
.format ("org.dianahep.sparkroot") \
.load ("hdfs://path/to/files/*.root™")

df .printSchema ()

root
|-— met: float (nullable = false)
| —— muons: array (nullable = false)
\ |-— element: struct (containsNull = false)

\ | |-—— pt: float (nullable = false)
| | |-— eta: float (nullable = false)
| | |-— phi: float (nullable = false)
|-— jets: array (nullable = false)

40 /50

| 55.59374|[[28.07075,-1.331...
[39.440292| []
[2.1817229|[[5.523367,-0.375..

| 80.58221[[48.910114,-0.17..

| 84.43806] H
| 84.63146][[33.84279,-0.062..

| 393.8167|[[25.402626,-0.66..

194.19714,-2.65...
93.64958,-0.273...
96.09923,0.7058...
165.2686,0.2623...
51.87823,1.6442...
137.74776,-0.45...
481.8268,-1.115...

L T s e T e T e e B S s B e M|

| 75.0873] [] 144.62373,-2.21...
|2.65129421[[6.851382,2.3145.. 72.08256,-1.713...
|36.753353] [] 72.7172,-1.3265...
o s S +

only showing top 10 rows

41 /50

| 55.59374|[[28.07075,-1.331...
[39.440292| []
[2.1817229|[[5.523367,-0.375..

| 80.58221[[48.910114,-0.17..

| 84.43806] H
| 84.63146][[33.84279,-0.062..

| 393.8167|[[25.402626,-0.66..

194.19714,-2.65...
93.64958,-0.273...
96.09923,0.7058...
165.2686,0.2623...
51.87823,1.6442...
137.74776,-0.45...
481.8268,-1.115...

L T s e T e T e e B S s B e M|

| 75.0873] [] 144.62373,-2.21...
|2.65129421[[6.851382,2.3145.. 72.08256,-1.713...
|36.753353] [] 72.7172,-1.3265...
o s S +

only showing top 10 rows

42 /50

Example session (Spark) €9 diana

(This is from a real CMS analysis.)

// Bring dollar-sign notation into scope.
import spark.sqlContext.implicits._

// Compute event weight with columns and constants.
df.select (($"lumi"+xsec/nGen) * $"LHE_weight" (309))
.show ()

// Pre—-defined function (notation’s a little weird).
val isGoodEvent = (
($"evtHasGoodVtx" === 1) &&
($"evtHasTrg" === 1) &&
(S$"tkmet" >= 25.0) &&
($"Mu_pt" >= 30.0) &&
(S"W_mt" >= 30.0))
// Use it.
println ("%d events pass".format (

df .where (isGoodEvent) .count ())) .

Example session (PySpark) € diana

(This is from a real CMS analysis.)

Python trick: make columns Python variables.
for name in df.schema.names:
exec ("{0} = df["{0}"]".format (name))

Look at a few event weights.
df.select ((lumi*xsec/nGen) * LHE_weight[309]) .show ()

Pre—-defined function (notation’s a little different).
isGoodEvent = (
(evtHasGoodVtx == 1)
evtHasTrg == 1)
tkmet >= 25.0
Mu_pt >= 30.0
W_mt >= 30.0)

22 2 &2

(1
()
()
()

Use it.
print "{} events pass".format (

df .where (isGoodEvent) .count ()) 4 /50

Example session (Spark) €9 diana

spark-shell —--packages \
org.diana-hep:spark-root_2.11:0.1.11, \
org.diana-hep:histogrammar_2.11:1.0.4

// Use Histogrammar to make histograms.
import org.dianahep.histogrammar.__

import org.dianahep.histogrammar.sparksql._
import org.dianahep.histogrammar.bokeh._

// Define histogram functions with SparkSQL Columns.
val h = df.Label (
"muon pt" -> Bin (100, 0.0, 50.0, $"Mu_pt"),
"W mt" -> Bin (100, 0.0, 120.0, $"W_mt"))

// Plot the histograms with Bokeh.

val bokehhist = h.get ("muon pt") .bokeh ()
plot (bokehhist)

val bokehhist2 = h.get ("W mt") .bokeh ()

plot (bokehhist2)
45 /50

Example session (PySpark) € diana

pyspark —--packages \
org.diana-hep:spark-root_2.11:0.1.11, \
org.diana-hep:histogrammar_2.11:1.0.4

Use Histogrammar to make histograms.
from histogrammar import =«

import histogrammar.sparksql
histogrammar.sparksqgl.addMethods (df)

Define histogram functions with SparkSQL Columns.
h = df.Label (

muon_pt = Bin (100, 0.0, 50.0, Mu_pt),

W_mt = Bin (100, 0.0, 120.0, W_mt))

Plot the histograms with PyROOT.
roothist = h.get ("muon_pt") .plot.root ("muon pt")
roothist.Draw ()
roothist2 = h.get ("W_mt") .plot.root ("W mt")
roothist2.Draw ()

46 /50

Example session (PySpark) € diana

pyspark —--packages \
org.diana-hep:spark-root_2.11:0.1.11, \
org.diana-hep:histogrammar_2.11:1.0.4

Use Histogrammar to make histograms.
from histogrammar import =«

import histogrammar.sparksql
histogrammar.sparksqgl.addMethods (df)

Define histogram functions with SparkSQL Columns.
h = df.Label (
muon_pt = Bin (100, 0.0,
W_mt = Bin (100, O

250

Plot the histograms ™
roothist = h.get ("muon_ =t
roothist.Draw () 0
roothist2 = h.get ("W_mt .t
roothist2.Draw () b etd

Lt
5 10 15 20 25 3 35 40 45 50

Not just Spark ¢odiana

root4j (ROOT reader) is separate from spark-root.
root4j opens the door to all the Java-based big data tools.

As far as I'm aware, it is one of only five ROOT TTree readers:

standard ROOT | C++
JsRoot | JavaScript
root4j | Java

RIO in GEANT | C++

go-hep | go

48 /50

Conclusing remarks ¢)diana

Perhaps you saw something here and thought,
» "l can use that to avoid my awful work-around!" or

» “| didn’t think that was possible! Now | can do something |
wouldn’t have considered before,” or

» “What | want to do is possible, but it will take some work."

49 /50

Conclusing remarks ¢)diana

Perhaps you saw something here and thought,
» "l can use that to avoid my awful work-around!" or

» “| didn’t think that was possible! Now | can do something |
wouldn’t have considered before,” or

» “What | want to do is possible, but it will take some work."

If so, contact me and | may be able to help. | know or am the
author of several of these packages, and can help you get started if
you need to develop something new.

pivarski@fnal.gov

50 /50

