Recombination correction for hadronic cascades

Dorota Stefan (CERN), Jiyeon Han (Pittsburgh)

Dec. 19th, 2016 / ProtoDUNE reconstruction meeting

Introduction

- Hadronic shower reconstruction for energy scale analysis
 - Understanding of hadronic shower topology in energy
 - Splitting events to many topological cases, mostly binned in energy range
 - For measuring the energy accurately
 - For getting the calibration factor for each topology
- Study using the deposited hit information in reconstruction and generator level
 - The ratio of E_{dep} to $E_{dep,MC}$ as a function of $E_{dep,MC}$ for all hits
 - The ratio of E_{dep} to E_{dep,MC} as a function of E_{dep,MC} for EM showers (noted as "E_{dep_em}")
 - (Edep Edep_em) / (Edep,MC Edep_em,MC) as a function of (Edep,MC Edep,MC(EM))
- Study the attenuation effect using MC information
 - The ratio of $E_{dep,MC}$ after to before attenuation as a function of $E_{dep,MC}$ (before) for all hits
 - The ratio of $E_{dep,MC}$ after to before attenuation as a function of $E_{dep,MC}$ (before) for EM showers
 - (Edep,MC,att Edep_em,MC,att) / (Edep,MC,att Edep,MC) as a function of (Edep,MC,att Edep,MC)
- Plot the scattering distribution for pion and proton (0.5 \sim 5 GeV)
 - Present few selected energy bins in the main slides and others are in back-up slides

Deposited energy definition

- Deposit energy definition :
 - E_{dep} : sum of electrons from ADC area in plane after lifetime correction (convert to E)
 - E_{dep,MC} : sum of energy deposit from TDCIDEMap (for every time slice in simchannel)
- EM showers :
 - EM clustering module, "EmTrackClusterId_module.cc" in larreco package
 - Package path : larreco/RecoAlg/ImagePatternAlgs
 - More details at Robert's talk (Nov. 28th, 2016) :
 - "EM components selection with CNN" :

https://indico.fnal.gov/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=13389

- E_{dep_em} : E_{dep} for EM clustered showers
- Edep_em,MC : Edep,MC for EM clustered showers (electron or photon)

Ratio of E_{dep} to $E_{dep,MC}$ for pion

• y-axis : ratio of energy deposit in rec to MC, x-axis : energy deposit in MC

• Event fraction of red circle is ~20% at 0.5 GeV pion, but decreases a lot, 1.3% at 5 GeV pion

Ratio of E_{dep} to $E_{dep,MC}$ for proton

• y-axis : ratio of energy deposit in rec to MC, x-axis : energy deposit in MC

• Proton doesn't have the distinguished event group in the large ratio region

2 GeV Pion events

• 2D plot for deposit energy ratio ($E_{dep}/E_{dep,MC}$)

Event display for "All hits"

• "All hits: class A" : the ratio > 0.65 and $E_{dep,MC}$ > 1 GeV

All hits : class A pion decays to muon + michel electron

• "All hits : class B" : the ratio < 0.6

All hits : class B pion mostly interacts inelastically

Event display for "EM showers"

• "All hits: class A" : the ratio > 0.5 and $E_{dep_em,MC} > 1 \text{ GeV}$

EM showers : class A Mostly showers from π^0 decay (relatively visible showers)

• "All hits : class B" : the ratio is around 0.3 and $E_{dep_{em,MC}} < 0.4 \text{ GeV}$

EM showers : class B Mainly tracks, and showers come from electron delta on tracks (small showers) Red circles correspond to delta

Check attenuation effect

- Plot the scattering distribution to see the attenuation effect : only MC information
 - All hits :
 - $E_{dep,MC,att}$ / $E_{dep,MC}$ as a function of $E_{dep,MC}$
 - $E_{dep,MC}$ is the deposit energy before the attenuation in MC
 - $E_{\mbox{dep},\mbox{MC},\mbox{att}}$ is the deposit energy after the attenuation in MC
 - Sum of number of electrons from TDCIDEMap (convert to E)
 - EM showers :
 - $E_{dep_em,MC,att}$ / $E_{dep_em,MC}$ as a function of $E_{dep,MC}$
 - $E_{dep_em,MC}$ is the deposit energy before the attenuation in MC for EM showers
 - $E_{dep_em,MC,att}$ is the deposit energy after the attenuation in MC for EM showers
 - Hadronic activity :
 - (Edep,MC,att Edep_em,MC,att)/(Edep,MC,att Edep,MC) as a function of (Edep,MC,att Edep,MC)
 - The deposit energy after the attenuation is not corrected for the lifetime

Attenuation effect for pion

• y-axis : energy deposit ratio in MC before to after attenuation, x-axis : energy deposit in MC

Spread in ratio is narrower and the overall ratio is slightly lower than the ratio with Edep

Attenuation effect for proton

Summary

- Look at the deposit hit information using various energy particles
 - Compare the scatter plot for all hits, EM showers, and hadronic activity
 - Compare pion vs. proton case
 - Look at the attenuation effect for all hits, EM showers, and hadronic activity
- Next step :
 - Try to verify the hypothesis using MCtruth information (more classification)
 - Calculate the calibration factor for each event category)

Back-up slides

Ratio of Edep to Edep,MC for pion (I)

Ratio of E_{dep} to E_{dep,MC} for pion (II)

Ratio of Edep to Edep, MC for pion (III)

Ratio of E_{dep} to E_{dep,MC} for pion (IV)

Ratio of E_{dep} to E_{dep,MC} for proton (I)

Ratio of E_{dep} to E_{dep,MC} for proton (II)

Ratio of E_{dep} to E_{dep,MC} for proton (III)

Ratio of E_{dep} to E_{dep,MC} for proton (IV)

• y-axis : ratio of energy deposit in rec to MC, x-axis : energy deposit in MC

proton 5 GeV

Attenuation effect for pion (I)

Attenuation effect for pion (II)

Attenuation effect for pion (III)

Attenuation effect for pion (IV)

Attenuation effect for proton (I)

Attenuation effect for proton (II)

Attenuation effect for proton (III)

Attenuation effect for proton (IV)

Calibration factor for pion and proton

• Overall calibration factor as a function of particle energy

• Calibration factor for EM showers is lower than all hits, especially for low energy