

European XFEL, lessons learned, a stepping stone to a linear collider

Nick Walker (DESY) for the XFEL team GARD SRF 2017 workshop, FNAL, 9.02.17

XFEL Process overview

XFEL Cavity Production (EZ, RI)

Entirely produced by industry and delivered "ready to go"

XFEL Cavity Production (EZ, RI)

Entirely produced by industry and delivered "ready to go"

Lesson learned #1: Yes you can do this and it worked really well

XFEL Cavity Production (EZ, RI)

Entirely produced by industry and delivered "ready to go"

Lesson learned #1: Yes you can do this and it worked really well Lesson learned #2: Be prepared to invest a lot of effort into making it work

European **XFEL** Cavity surface preparation

- Well-established process
 - >15 years R&D
- Two 'final' surface preparation methods:
 - RI: Final EP
 - EZ: Flash BCP
 - Vendor decision
- ILC TDR baseline is Final EΡ

DES

INFN

HELMHOLTZ

ASSOCIATION

4

XFEL Vertical tests at AMTF

HELMHOLTZ

ASSOCIATION

12

XFEL As Received Maximum Gradient in the VT

European XFEL, lessons learned, a stepping stone to a linear collider

typical individual error: 10%

XFEL As Received Usable Gradient in the VT

typical individual error: 10%

GARD SRF 17 Workshop, FNAL 8.02.17 Nick Walker et al, DESY

- $Q_0 \ge 1 \times 10^{10}$
- FE threshold (X-ray)
 - → Usable Gradient

XFEL Usable gradient: limiting effects

- Q₀ dominates at higher gradients (high-gradient Q-slope)
- Field Emission (FE) dominates <24 MV/m</p>
- Quench (BD) not dominant –mostly higher gradients

European **Recovering low performance cavities**

- E_{usable} <20 MV/m rejected
 - Approx. 15% cavities
- Sent for surface retreatment
 - Mostly High Pressure Rinse (HPR)
 - Small fraction Buffered Chemical Polishing (BCP) and/or "grinding"

		Max	Usable
Average	MV/m	31.4	27.7
RMS	MV/m	6.8	7.2
Median (50%)	MV/m	32.5	28.7
Yield ≥20 MV/m		92%	86%
Yield ≥26 MV/m	l	85%	66%

HELMHOLTZ

XFEL Number of retreatments after the 1st vertical test

- Approx. 22% of cavities had ≥1 retreatment
 - ~15% performancedriven
 - ~7% due to vacuumand mechanicalrelated problems (mostly HPR)
- 5% had 2 or more retreatments.
 - including both chemical and mechanical (grinding)

ELMHOLTZ

ASSOCIATIO

$$\langle E_{\text{usable}} \rangle$$
 = 29.8 ± 5.1 MV/m

HELMHOLTZ

ASSOCIATION

1

13

Average \pm RMS:

4 MV/m: $2.1\pm0.3 \times 10^{10}$ 23.6 MV/m: $1.3 \pm 0.3 \times 10^{10}$

Estimated measurement error 10-20%

XFEL spec: $\geq 10^{10}$

HELMHOLTZ

DE

INFŃ

14

XFEL VT vs MT: Making Comparisons

	VT	МТ	
Maximum gradient	No administrative limit	limited to 31 MV/m	<i>True impact unknown (but can set an upper limit)</i>
Field Emission (X-Ray)	Two monitors above and below cryostat	Two monitors upstream and downstream of cryomodule axis	Different geometry / calibration makes exact comparison difficult
Q ₀	RF measurement	~1 hour 2K cryoload measurement with all cavities on resonance	No Q ₀ limit taken in MT definition of usable gradient.
General	CW measurement	Pulse RF measurement (10% duty cycle)	Systematic errors and uncertainties

C

XFEL VT vs MT: Making Comparisons

		VT	МТ	
Maximun	n gradient	No administrative limit	limited to 31 MV/m	<i>True impact unknown (but can set an upper limit)</i>
Field Em (X-Ray)	when mal	king comparisons,		geometry / n makes mparison
Q_0			I HOUL ZIT GLYOIDAU	nit taken in من محمد nit taken in
			measurement with all	MT definition of
			cavities on resonance	usable gradient.
General		CW measurement	Pulse RF measurement (10% duty cycle)	Systematic errors and uncertainties

A quench (BD) below 31 MV/m can be compared

	N _{cavs}	Average	RMS
VT	815	28.3 MV/m	3.5
CM	815	27.5 MV/m	4.8

VT capped at 31 MV/m for fair comparison

~3% difference measured this way $3\% \le \Delta G \le 8\%$

XFEL Degradation matrix

Degradation defined as ≥20% (red)

Average (blue line) is good but spread within modules is still quite large

 \rightarrow "Fine tuning" of waveguide distribution to maximise energy gain.

ELMHOLTZ

ASSOCIATION

XFEL Into the LINAC

GARD SRF 17 Workshop, FNAL 8.02.17 Nick Walker et al, DESY

DES

European European XFEL, lessons learned, a stepping stone to a linear collider European Impact of Waveguide Distribution (WD) system XFEL Installed Gradient)

- 1 10-MW klystron drives four modules (32 cavities)
- WD for cryomodules tailored for MT results
 - maximising voltage
 - up to 3dB difference between cavity pairs
- Allow up to 3dB split between adjacent cryomodule pairs
- Equal power output from two klystron arms

see THPLR067 Choroba, Katalev, Apostolov

European XFEL, lessons learned, a stepping stone to a linear collider Impact of Waveguide Distribution (WD) system European (Installed Gradient)

- 1 10-MW klystron drives four modules (32 cavities)
- WD for cryomodules tailored fo results
 - maximising voltage
 - up to 3dB difference betweer cavity pairs
- Allow up to 3dB split between adjacent cryomodule pairs
- Equal power output from two kl arms

European **Projected installed energy profile XFEL**

24

Nick Walker et al, DESY

(4 cryomodules)

ILC specifications

Has XFEL achieved them?

(Discussing mostly VT performance)

XFEL ILC assumptions

- Vertical Test qualification
 - \geq 35 MV/m with Q₀ \geq 8×10⁹
- Installed
 - \geq 31.5 MV/m with $Q_0 \geq$ 10¹⁰ (10% for degradation and operations margin)

TDR cost model

- Specification for gradient spread ±20%
 - 28 MV/m \leq g \leq 42 MV/m, \langle g \rangle = 35 MV/m
- Reinterpret VT Qualification as required yield ≥ 28 MV/m with (g) = 35 MV/m (Q₀ ≥10¹⁰ ?)
 - First pass: 75%
 - Second pass: 90%

XFEL 'Final EP' vs 'Flash BCP'

RI (Final EP)

Max	Usable
375	375
33.	29.
6.6	7.4
35.	33.3
94%	89%
86%	63%
44%	18%
	Max 375 33. 6.6 35. 94% 86% 44%

- RI cavities showed ~10% improvement in average performance
 - Both max and usable
- Mostly attributed to high-field Q-slope associated with Flash BCP

HELMHOLTZ

ASSOCIATION

European XFEL, lessons learned, a stepping stone to a linear collider

XFEL 'Final EP' vs 'Flash BCP'

RI (Final EP)

Max	Usable
375	375
33.	29.
6.6	7.4
35.	33.3
94%	89%
86%	63%
44%	18%
	Max 375 33. 6.6 35. 94% 86% 44%

- RI cavities showed ~10% improvement in average performance
 - Both max and usable
- Mostly attributed to high-field Q-slope associated with Flash BCP

4

XFEL Usable field – ignore Q₀? (FE only)

RI cavities only

Usable (XFEL)

Usable (No Q0 limit)

	Max	Usable	usable No Q
Number of cavities	375	375	372
(G) [MV/m]	33.	29.	31.4
$\sigma_{\rm G}$ [MV/m]	6.6	7.4	7.5
⟨G⟩ _{G≥28} [MV/m]	35.	33.3	34.7
Yield @20	94%	89%	91%
Yield @28	86%	63%	77%
Yield @35	44%	18%	37%

Max

Usable (No Q0 limit)

C

Calculate g^2/Q_0 all cavities with $g \ge 28$ MV/m Normalise to to $35^2/10^{10}$

True first pass yield is between XFEL and 'no Q_0 ' limits (63% and 77%)

30

XFEL Second pass?

31

- No direct 'correct' comparison possible
 - Cut off for XFEL retreatment ≤20 MV/m
 - ILC is ≤28 MV/m
- Can try to use retreatment MC model based in XFEL results

		ILC TDR	XFEL	
		(assumed)	max	usable
First-pass	Yield >28 MV/m Average >28 MV/m	75% 35 MV/m	85% 35.2 MV/m	63% 33.5 MV/m
First+Second pass	Yield >28 MV/m Average >28 MV/m	90% 35 MV/m	94% 35.0 MV/m	82% 33.4 MV/m
First+Second+third	Yield >28 MV/m	-		91%
pass	Average >28 MV/m	-		33.4 MV/m

More re-treatments - but mostly only HPR

Number of average tests/cavity increases from 1.25 to 1.55 (1st+2nd) or

20% over-production or additional re-treat/test cycles

XFEL Lessons Learnt?

- TESLA technology has been successfully industrialised and can be mass produced
 - No reasons why this cannot be extrapolated to ILC numbers
- Success requires DILIGENCE (and attention to detail)
 - Close cooperation with cavity vendors
 - Constant feedback, QA and QC
- Standard 'TESLA' recipe can <u>almost</u> achieve ILC specifications
 - But improvement still needed
 - 30 MV/m average is great by 7 MV/m RMS spread is too large (why?)
 - Q₀ performance (Nitrogen anybody?)
- String assembly without degradation is not impossible
 - Again, requires diligence!
 - Auditing, QA/QC, feedback, etc.

HELMHOLTZ

SSOCIATION