SRF technology for future CERN machines

Frank Gerigk, CERN, GARD-SRF Roadmap Workshop 9-10 February 2017, FNAL

Material from:

Sarah Aull, Olivier Brunner, Rama Calaga, Veronica Del Pozo Romano, Alexey Grudiev, Erk Jensen, Mikko Karppinen, Guillaume Rosaz, Nikolai Schwerg, Alban Sublet, Mauro Taborelli, Giovanna Vandoni, Walter Venturini

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

Content

01	LHC
02	HL-LHC
03	FCC
04	Summary

LHC cavities

Frank Gerigk, LINAC16, 26 – 30 Sep. 2016, Lansing, USA

LHC spare cavity program

- NB-COATED Cu single cell cavities operating at 4.5 K.
- 400.790 MHz, 2 MV/cavity.
- 2 cryomodules of 4 cavities/beam.
- have retired.
- LHC cryomodules.

The LHC spare cavity program aims at producing 2 spare cavity trains (4 cavities), which may become potentially 2 complete cryomodules. ⇒re-establishment of engineering folder, welding, tuning, assembly, and coating

procedures

industrial production of cavities and subsequent coating at CERN

• 1 spare module and one spare dressed cavity available. Many of the "old" experts

• LHC has a physics program until 2035 and we have no experience with ageing of

Frank Gerigk, GARD–SRF, 9–10 Feb 2017, FNAL

LHC spare cavity program

Practice cavity 1,2

- full cut-off tubes,
- cavity fabrication tools & process,
- rinsing, chemistry
- Nb-coating (magnetron sputtering),
- qualification & cold tests
- several re-coatings
- not intended as spare

Practice cavity 3,5

- half cells by spinning and electro-hydraulic forming (EHF),
- simplified cut-off tubes,
- cold tests in May/July 2017
- not intended as spare

Model cavity

- validation of cavity design &
- fabrication process
- He-tank updated design,
- cold test expected August 2017
- if successful: the first spare cavity

Series production

- 8 cavities + 2 spares,
- tendering for cut-off tubes early 2017,
- production of half cells (spun or EHF)
- He-tanks tendering in 2017

LHC spares: timeline

2016	2017		2018		2019	2020		
design & a	nalysis							
Practice cavity 1,2								
Practice	cavity 3	3,5						
	Μ	odel cavity						
te	Market s echnolog	urvey, IT, gy transfer						
			spare cav	vities	1-4			
spare cavities 5-8								

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

- Don't change a working system...
- Trying to replicate the original design as good as possible (with very little) documentation). Only then do we get derogation from the pressure vessel tests...
- Reverse engineering effort.
- Inside welding no longer feasible, now welding from the outside. • Calculations on material stresses, which were not possible in the original design stage. • 40 companies contacted in market survey for cut-off tubes and potentially cavity
- welding: 2 replied.
- Quality of coating to be re-established.
- Tuning machine corroded in the fields. New machine to be developed. Using spinning or electro-hydro-forming (originals were spun).

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

High-luminosity LHC

the largest HEP accelerator in construction (1.2 km of LHC!)

High Luminosity LHC Project

HL-LHC PROJECT MANAGEMENT

Project Leader: Lucio Rossi, CERN Deputy Project Leader: Oliver Brüning, CERN Project Office Manager: Laurent Tavian, CERN Configuration, QA, Resource Manager: Isabel Bejar Alonso, CERN Integration: Paolo Fessia, CERN Collaborations (in-kind): Beniamino Di Girolamo, CERN Budget Officer: Benoit Delille, CERN Safety Officer: Thomas Otto, CERN Communication: Isabel Bejar Alonso, CERN Secretariat: Cécile Noels, CERN

NON MEMBER STATES COLLABORATIONS¹

US HL-LHC AUP9 - USA Project Manager: G. Apollinari, FNAL Deputy Project Manager: R. Carcagno, FNAL Magnet Systems G. Ambrosio, FNAL Crab Cavities System A. Ratti, LBNL, L. Ristori, FNAL

KEK - Japan LHC Upgrade Coordinator: K. Tokushuku SC D1 Magnet: T. Nakamoto

WP10 Energy Deposition & R2E Markus Brugger – Francesco Cerutti

> WP11 11 T Dipole Frédéric Savary

Hervé Prin

WP12 Vacuum Vincent Baglin Roberto Kersevan

WP13 Beam Instrumentation Rhodri Jones Adriana Rossi WP14 Beam Transfer

Chiara Bracco Brennan Goddard

WP15 Integration & (De-)Installation Paolo Fessia Hélène Mainaud Durand (Survey)

WP16 IT String & Commissioning Marta Bajko – Mirko Pojer

WP17 Infrastructure & Logistics

Laurent Tavian Beniamino Di Girolamo

In kind contributions **INFN** Directorate **INFN Milano LASA** ⁴ INFN Genova ^b University of Manchester/Cockcroft Institute ⁶ Lancaster University/Cockcroft Institute ⁷ Royal Holloway/John Adams Institute ⁸ University of Southampton ⁹ US HL-LHC Accelerator Upgrade Project

Frank Gerigk, GARD–SRF, 9–10 Feb 2017, FNAL

RF Dipole

Double Quarter Wave

2 types of Crab cavities

Voltage	3.4 MV/cavity
E peak	40 MV/m
B _{peak}	70 mT
Frequency	400.79 MHz
Q ₀	10 ¹⁰
Qext	5 x 10 ⁵
Cavity tuning	±100 kHz
Temperature	2.0 K
RF power	40 kW

2 cavities/beam/IP side
 for ATLAS and CMS
 16 cavities/8 CMs in total

2 types of Crab cavities

Double Quarter Wave

- Vertical crossing for Atlas
- SPS test in 2018

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

RF Dipole

- Horizontal crossing for CMS
- SPS test in 2021

SPS test stand layout

Cavity & Cryomodule Workflow towards SPS test, HL-LHC Collaboration Meeting, 11/2016, Paris, F. Gerigk

- Moving table can move the cavity in/out of the SPS beam in ~10 min.
- Test stand is foreseen for DQW and RFD.
- In Nov 2015 CERN insourced the DQW production
- Test stand will remain as a unique SRF test stand with proton beams at CERN.

Crab cavities: timeline

Last test opportunity before launch of series:

- First operation of crab cavities in high-current and high-energy proton machine. Mandatory test before LHC installation!
- Precision control of voltage and phase for preservation of beam quality.
- \rightarrow Trip rate must not impact LHC availability.
- Emittance growth, machine protection, RF non-linearities, instabilities,

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

0	2021	2022	2023	2024	2025	2	026	
		Run 3			F	Run 4		
on	SPS test CM2							
sed	cavities)							
LHC series production & installation (8 CMs)								

⇒ Injection/capture/acceleration with crabs, can the cavities be made invincible for the beam (counter-phasing)?

Final weld on DQW #1

Recent progress

Frequency tuning successful

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Power coupler test box

14

He-tank thermal shock test

Technology dev. / R&D

- Bulk 400 MHz Nb crab cavities & their cryomodules.
- proton beam.
- Low trip rate mandatory!
- Industrialisation for small series (8 cavities intended from the US, 8 to be tendered by CERN).

• Power couplers, HOM couplers, cavity control, operation with high-energy

Frank Gerigk, GARD–SRF, 9–10 Feb 2017, FNAL

Future Circular Collider Study

- CDR until 2019,
- In 2020 assessment by the European Strategy Group on the future physics roadmap.
- FCC-ee as potential first step
- FCC-he as option
- FCC-hh 100 TeV pp in 100 km
- Potential construction: 2025-2035

parameter	FCC-ee						
physics		Z	W	Η	t	hh	
energy/beam [GeV]	45.6		80	120	175	50000	
bunches/beam	30180	91500	5260	780	81		
bunch spacing [ns]	7.5	2.5	50	400	4000	25	
bunch population [1011]	1.0	0.33	0.6	0.8	1.7	1	
beam current [mA]	1450	1450	152	30	6.6	500	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	210	90	19	5.1	1.3	5-30	
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55		
RF voltage [GV]	0.4	0.2	0.8	3.0	10	0.032	

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

FCC options

parameter		
physics		Z
energy/beam [GeV]	45	5.6
bunches/beam	30180	91500
bunch spacing [ns]	7.5	2.5
bunch population [1011]	1.0	0.33
beam current [mA]	1450	1450
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	210	90
energy loss/turn [GeV]	0.03	0.03
RF voltage [GV]	0.4	0.2

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

8.0

FCC options # "high current" machine FCC-hh FCC-ee hh W t Η 50000 120 175 80 780 81 5260 400 4000 25 50 0.6 8.0 1.7 152 500 6.6 30 5-30 1.3 19 5.1 0.33 1.67 7.55

10

FCC-hh Η t

3.0

"high gradient" machine

0.032

cavity options (per beam)

parameter	FCC-ee									
physics		Z	W		Н		t		hh	
RF voltage [GV]	0.4	0.2	0.8		3.0		10		0.32	
Energy loss/turn [GeV]	0.	03	0.33		1.67		7.5			
beam current [mA]	1450		152		30		6.6		500	
cavity technology	Nb/Cu		Nb/Cu	Nb	Nb/Cu	Nb	Nb/Cu	Nb	Nb/Cu	
E _{acc} [MV/m]	10		10	20	10	20	10	20	10	
frequency [MHz]	4(00	400	800	400	800	400	800	400	
temperature [K]	4.5	4.5	4.5	2.0	4.5	2.0	4.5	2.0	4.5	
Nb cavities	107	54	107	107	200	200	667	667	32	
cells/cavity	1	1	2	2	4	4	4	4	1	
Pcavity	462	924	470	470	251	251	75	75	<500	

same cryomodule

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

both beams in same cavities

two different sets of cavities will be needed to cover all scenarios

"high current" machine

- lower frequency, low N_{cells}, low R_s
- 400 MHz, Nb/Cu, < 100 cavities
- FPC: aim at 1 MW/cavity (movable for hh, fixed for ee)
- HOM power < 1.5 kW/cavity
- 1 RF source/cavity (e.g. high efficiency klystrons)
- CM design to accommodate 1-cell (W) and 2-cell cavities (Z, hh)

cavity options II

"high gradient" machine

- optimise power consumption, multicell, high R_s
- 400 MHz (Nb/Cu) or 800 MHz (Nb), > 1000 cavities
- transverse impedance favours low frequency
- N_{cells} defined by beam-cavity interaction, for now assume 4/5
- 1 RF source/cavity: SSPA, IOT

SRF R&D for FCC

optimize cell shapes

Q-slope mitigation beam dynamics studies

assembly & cost optimisation

ancillaries: 1 MW CW coupler!

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

material & manufacturing

efficient RF production

coated crab cavities

FCC

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Thin film R&D

Overview

Coating methods

- **Diode coating** with bias for HIE-ISOLDE
- Direct Current Magnetron Sputtering (DCMS) for LHC cavities.
- Improved method: **Biased High Power Impulse** Magnetron Sputtering (HiPIMS), more R&D needed.
- HIPIMS coating: 10 single cell 1.3 GHz cavities (from LNL) are being prepared to test coatings with different HIPIMS parameters.
- R&D on new coating cathodes (400 and 800 MHz).

Coatings types

- Crucial: R&D on **surface preparation** of Cu and Nb surfaces.
- Full **EP** of substrates, upgrade existing facility for 400 and 800 MHz Cu. 704 MHz multi-cell Nb was already done in a vertical set-up.
- > 30 coatings on seamless 6 GHz cavities with a few for application at 800 MHz (INFN, Italy).
- Microscopic and surface characterisation of samples at STFC (UK)
- Longer term effort: **A15 coatings**: Nb₃Sn at high-temperature (600-700 deg), annealed Cu, V₃Si
- More details in session 1 & 2 by Sarah Aull.
- 800 MHz bulk Nb used as state of the art comparison (JLAB) collaboration).
- Collaboration agreement with FNAL in preparation on prospects of Nb₃Sn and nitrogen doping for bulk Nb 400-800 MHz cavities.

Frank Gerigk, GARD–SRF, 9–10 Feb 2017, FNAL

Thin film R&D

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Quadrupole resonator

Our tool to qualify SRF surfaces

Principle

- 4 rod transmission line half-wave resonator
- resonant frequencies: 400/800/1200 MHz
- pole shoes focus magnetic field on the sample
- thermally decoupled sample
- high-resolution calorimetric measurement of surface resistance

- Since then it became a work-horse for CERN's coating qualification.
- 400, 800, and 1200.
- Machining starts early 2017, first tests foreseen in 2018.

Activity

 Original QPR was built 20 years ago to measure samples for the LHC cavities. • HZB Berlin recently optimised and re-built the QPR (Niowave) and achieved 120 mT on the sample surface (see SRF 2015) for 433, 867, and 1300 MHz. • CERN has further optimised the pole shoes and is building another device for

Next generation Crab Cavity FCC # Wide Open Waveguide cavity (WOW)

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

Why a Nb/Cu crab cavity?

- No thermal run-away ("natural" quench protection).
- Lower cavity impedance (mandatory for FCC).
- No magnetic shield (cost, simplicity).
- feedthroughs).
- Cheaper base material (Cu), easier welds,
- Operation at 4.5 K.
- Mechanical stability (lower microphonics, easier RF stabilisation).
- Structure can be cascaded.

• Crab cavity power needs are driven by off-axis beam and not by surface losses.

• Power coupler and HOM dampers can be outside of the helium tank (no

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

Wide Open Waveguide cavity

electric

magnetic

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Basic parameters

Voltage	2.7 MV/cavity	80% of bulk Nb (
E _{peak}	40.5 MV/m	same as bulk Nb
B _{peak}	70 mT	same as bulk Nb
Frequency	400.79 MHz	
Temperature	4.5 K	
Pdiss	< 50 W	for LHC quality co

electric

magnetic

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

machined out of seamless tubes • then welded & coated

Status & timeline

- Copper is at CERN and qualified, welding tests done, handling and tooling concept is defined.
- Mechanical drawings ready, machining of prototype 1 is starting.
- Preliminary coupler design for vertical testing.
- LHC-style coating set-up (coating electrodes inserted in cavity) was chosen.
 Small modifications on existing set-up is needed.

2016				2017				2018					2019	
materia	l procure	ement, d	rawings	s fabrication 1st prototype										
							fabrication 2nd prototype							
			coating design & construction				coating, cold testing, re-coating							

Active power coupler R&D

Operation of 26 couplers (4 spares)

Operation of 20 couplers (10 spares)

	24 couplers (+8)								
7)									
LHC v2			4 (+?)						
U 800	800			8 (+8)					
HL-LHC (CRAB)						16 (+8)			
 2()20			20	25				

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

- 4 CM with 5 low-beta QWR in each. 6 MV/m, $Q_{0,nom}=5\times10^8$
- Crisis in 2015, no one understood why linear indications ("microcracks") appeared on the cavities and spoiled the performance.
- Strategy: i) shrink-fit and weld at CERN, ii) work on the welding parameters (already succeeded), iii) seamless cavities (under test).
- CM3 needs 70 W instead of 50 W, and there are good hopes that CM4 will be at nominal, allowing full-spec operation!
- In-situ helium processing works and provides a mechanism to save declining (dirty) cavities.
- First 2 physics runs successful.

HIE ISOLDE

in-situ Helium processing

- front-end with SC cavities in HIE-ISOLDE phase 3 (not funded/agreed today).
- LHC spare cavities.
- Crab cavities for HL-LHC.
- R&D program towards FCC, 400/800 MHz with modest gradients.
- Coated crab cavity for FCC.
- Short to medium term: focus on HIPIMS Nb/Cu. Construction of new QPR.
- Long term: A15 coatings on Cu.
- Improved power couplers, aiming at 1 MW CW.

• HIE ISOLDE low-beta QWR: 3 modules installed, 1 more to come. Potential to replace NC

• Focus on coated Cu cavities (not many alternatives for <=400 MHz): Extensive Nb on Cu

• Bulk Nb: crab cavities for HL-LHC, modest effort on 704 MHz 4-cavity (5-cell) CM, 800 MHz for FCC (but also trials with Nb/Cu at 800 MHz). Reference for comparison coated cavities.

Frank Gerigk, GARD–SRF, 9–10 Feb 2017, FNAL

