ILC as a Higgs Factory

Main Linac

10000000

Nick Walker (DESY)

ΪĹ

Main Linac

Halving the energy of the TDR machine

Benchmark cryomodule cost (XFEL)

TDR 500 GeV Baseline

P_{AC}: 161 MW

ilr

TDR Baseline Relative Costs

By accelerator sub-system

TDR Baseline Relative Costs

Main linac breakdown (Tech. sub-systems)

Main linac ~50% cost of ILC (not including CFS)

Simple Cost Scaling:

Assuming 500 GeV infrastructure maintained (CFS)

→ 250 GeV ~25%
→ 350 GeV ~15%

250 GeV Only

Half the linac Shorter BDS 1/2

;),

İİİ

RTML LRL 1/2

10Hz mode e- linac for pol. e+ production

250 GeV staged (scenario 1)

Extended tunnel/CFS already 500 GeV stage

10Hz mode e- linac

ilr

250 GeV staged (scenario 2)

10Hz mode e- linac

ir

Summary

	TPC	MW
Minimal Higgs Machine	67%	120
Full tunnel scenario 1	73%	120
Full tunnel scenario 2	75%	125

Remove 10-Hz op.

• •

Cryomodule cost: from XFEL to ILC

XFEL final costs are now completely known

Small tweaking still on-going, mostly institutional labour costs

XFEL cost breakdown available for

- Cryomodule
 - Niobium
 - Cavity fabrication
 - HP coupler
 - Tuner
 - Quad package
- Testing (cavity, cryomodule, HPC processing)
 - Infrastructure
 - Labour cost
 - Operations cost (kW)

Cryomodule cost: from XFEL to ILC

- ILC estimate (TDR) has very detailed breakdown
 - More depth than I have for XFEL
- Institution labour reported as hours
 - Cavity and cryomodule testing
 - HP coupler processing
- Despite difficulties, will attempt a comparison
 - XFEL module cost can be taken as "state of affairs" as of today.

Cryomodule Cost

Module costs without testing

ir

- ILC module costs predominantly based on XFEL costs
- Application of 95% slope learning curve applied
 - − Assumed two-vendor model → ~15% reduction
- Exception: cavity
 - Bottoms-up cost study (by RI)
 - Assumed 3 year production of 50% of cavities (~8000)
 - Investment in high capacity infrastructure (reduction of manpower per cavity)
 - Currently looking at 3x2=6 vendors for 5-6 year production
- 50% cost reduction over XFEL to achieve TDR possible but will require work

- Industrialisation, design for manufacture, R&D...

Cryomodule costs (testing)

ilc

- Largest cost reduction is 1-in-3 testing rate
 - Also 'rent' mode of infrastructure (50% cost)
 - Amortisation of infrastructure cost over larger production volume
- For XFEL, cost of testing is second biggest cost driver
 - Next to cavities

İİİ,

 1-in-3 testing model would not have worked for XFEL

- Based on current TDR cost estimate, halving the energy reduces the total cost by 25%
 - Main Linac is 50% of TPC (not including tunnel)
- 'Minimum' 250 GeV machine could achieve ~33-36%
 - But not as easy to upgrade later
- Plenty of scope for further cost reduction
 - Many many 1-2% effects (not just SRF R&D!)
 - Requires good Value Engineering (i.e. resources!)
- Also Plenty of Scope for cost increase!
 - Cost of XFEL module still 50% higher than ILC goal
 - 31.5 MV/m average operation still requires some work

Backup

Relative to TDR 500 GeV baseline (1312 bunches) Two stage compressor (5-<u>15 GeV</u>)

Half linacs solution G = 31.5 MV/m

Relative to TDR 500 GeV baseline (1312 bunches)

Two stage compressor (5-<u>15 GeV</u>)

POSITRON linac straightforward

~50% ML linac cost (cryomodules, klystrons, cryo etc.)
 ~50% ML AC power

Half linacs solution G = 31.5 MV/m

Relative to TDR 500 GeV baseline (1312 bunches)

Two stage compressor (5-<u>15 GeV</u>)

POSITRON linac straightforward

~50% ML linac cost (cryomodules, klystrons, cryo etc.)
 ~50% ML AC power

Half linacs solution G = 31.5 MV/m

ELECTRON linac needs 10Hz mode for e+ production $\Delta E = 135 \text{ GeV}$ instead of 110 GeV (+25 GeV)

~57% ML linac cost (cryomodules, klystrons etc)

10Hz needs (1/2 linac × 10Hz/5Hz): 100% ML AC power (1/2 linac × 10Hz/5Hz) 80% cryo cost (50% static + 100% dynamic)

Relative to TDR 500 GeV baseline (1312 bunches)

Two stage compressor (5-<u>15 GeV</u>)

POSITRON linac straightforward

~50% ML linac cost (cryomodules, klystrons, cryo etc.)
 ~50% ML AC power

Half linacs solution G = 31.5 MV/m

ELECTRON linac needs 10Hz mode for e+ production

 $\Delta E = 135 \text{ GeV}$ instead of 110 GeV (+25 GeV)

~57% ML linac cost (cryomodules, klystrons etc)

10Hz needs (1/2 linac × 10Hz/5Hz): 100% ML AC power (1/2 linac × 10Hz/5Hz) 80% cryo cost (50% static + 100% dynamic)

Total Main Linac infrastructure		
Linac components:	50%	
Cryogenics:	65%	
RF AC power	75%	